ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА И.П. ПАВЛОВА» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

На правах рукописи

Гленза Айюб

Факторы риска, клиническая характеристика и исходы при 7-летнем наблюдении у больных с артериальной гипертензией

3.1.20. Кардиология

Диссертация на соискание ученой степени кандидата медицинских наук

> Научный руководитель: доктор медицинских наук, профессор Якушин Сергей Степанович

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ	. 18
1.1. Артериальная гипертензия в Российской Федерации и Рязанской области:	
эпидемиология, заболеваемость, смертность	. 18
1.2. Изучение факторов риска артериальной гипертензии и их	
распространенность	22
1.2.1. Дислипидемия	. 23
1.2.2. Нарушения углеводного обмена	. 24
1.2.3. Избыточная масса тела и ожирение	. 26
1.2.4. Курение	. 27
1.2.5. Повышенная частота сердечных сокращений	. 29
1.2.6. Стресс, тревога и депрессия	. 30
1.3. Оценка сердечно-сосудистого риска по шкалам SCORE и SCORE2	. 32
1.4. Изучение структурных изменений сердца и сосудов при артериальной	
гипертензии	. 36
1.5. Оценка лечения и приверженности к лечению у больных с ГБ	. 41
1.6. Суммарная оценка фатального и нефатального риска при артериальной	
гипертензии	. 44
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ	. 48
2.1. Объект исследования	. 48
2.2. Методы исследования	. 50
2.3. Этические аспекты исследования	. 55
2.4. Методы статистической обработки	. 55
ГЛАВА 3. ИЗУЧЕНИЕ ФАКТОРОВ РИСКА У ПАЦИЕНТОВ С ГБ И У	
ИССЛЕДУЕМЫХ С ОДНОКРАТНЫМ ПОФАД, НО БЕЗ ДИАГНОЗА ГБ	. 57
ГЛАВА 4. ОЦЕНКА РЕЗУЛЬТАТОВ УЗИ СОННЫХ, БЕДРЕННЫХ АРТЕРИЙ	Í
И УЗИ СЕРДЦА	. 69
ГЛАВА 5. ОЦЕНКА СС РИСКА ПО ШКАЛЕ SCORE И SCORE 2	. 79

ГЛАВА 6. ОЦЕНКА ЛЕЧЕНИЯ, ПРИВЕРЖЕННОСТИ К ТЕРАПИИ И	
ФАКТОРОВ, ВЛИЯЮЩИХ НА ИХ ЭФФЕКТИВНОСТЬ, У ПАЦИЕНТОВ С	
ГИПЕРТОНИЧЕСКОЙ БОЛЕЗНЬЮ	90
ГЛАВА 7. СУММАРНАЯ ОЦЕНКА КОНЕЧНЫХ ТОЧЕК ПРИ 7-ЛЕТНЕМ	
НАБЛЮДЕНИИ	97
ГЛАВА 8. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ	. 119
ЗАКЛЮЧЕНИЕ	. 131
ВЫВОДЫ	. 133
ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ	. 136
СПИСОК СОКРАЩЕНИЙ	. 137
СПИСОК ЛИТЕРАТУРЫ	140

ВВЕДЕНИЕ

Актуальность темы исследования

Артериальная гипертензия (АГ) является наиболее распространённым сердечно-сосудистым заболеванием (ССЗ) в мире. По данным Всемирной организации здравоохранении (ВОЗ) за 2023 г., этим заболеванием страдают 1,28 миллиарда взрослых в возрасте от 30 до 79 лет. Стандартизированная по возрасту распространённость АГ среди взрослого населения данной возрастной группы составляет 34% у мужчин и 32% у женщин. При этом около 46% взрослых с АГ не осведомлены о наличии заболевания. Только у 42% пациентов АГ диагностирована, и они получают лечение, и только у 21% заболевание находится под контролем [176, 224]. В российской популяции среди мужчин в возрасте 25–64 лет распространённость АГ несколько выше и в некоторых регионах достигает 47%, тогда как среди женщин она составляет около 40% [8].

Среди населения Рязанской области (РО) отмечается особенно высокая распространённость АГ. По данным исследования ЭССЕ-РФ2, проведённого в четырёх регионах России, самый высокий показатель распространённости АГ был зафиксирован в РО, где он достиг 50,2% (52,8% у мужчин и 47,1% у женщин). В то же время в других регионах, таких как Краснодарский край и Республика Карелия, этот показатель был ниже [47]. Кроме того, в РО АГ характеризуется низкой частотой достижения целевого уровня артериальное давление (АД), что подчёркивает необходимость учёта региональных особенностей, у лиц с АГ при разработке профилактических мер.

АГ связана со многими другими факторами риска (ФР) и ассоциируется с большинством хронических неинфекционных заболеваний (ХНИЗ) [61]. Другие значимые метаболические ФР ССЗ включают дислипидемию, сахарный диабет (СД) и избыточную массу тела (МТ). Важно отметить, что в России гиперхолестеринемия диагностируется у 56,3% мужчин и 58,4% женщин, причём сочетание дислипидемии с АГ наблюдается в 40% случаев [3, 51]. В РО эти

показатели подтверждаются исследованиями, такими как МЕРИДИАН-РО (Эпидемиологическое исследование состояния здоровья и поведенческих факторов риска у населения Рязанской области), которые демонстрируют, что доля лиц с нарушениями липидного профиля значительно выше, что подчёркивает необходимость регионально адаптированных подходов [59].

Кроме того, СД и предиабетические состояния заслуживают особого внимания. Хотя в России диагноз СД установлен у 3,31% населения, реальные цифры, особенно в регионах, вероятно, выше из-за недоучёта. В РО эта проблема также актуальна, что требует улучшения диагностики и профилактических программ [59, 151].

Что касается избыточной МТ и ожирение, то они тесно связана с АГ: среди мужчин с избыточным весом частота заболевания достигает 45,8%, среди женщин – 38,5%. Следует подчеркнуть, что РО занимает лидирующие позиции по распространённости ожирения в стране, что делает данную проблему особенно важной для региона [39].

Не менее значимыми являются курение и повышенная частота сердечных сокращений (ЧСС), которые оказывают серьёзное воздействие на сердечно-сосудистую систему, способствуя повышению АД. Согласно исследованиям, в РО распространённость курения и повышенной ЧСС достигает 15,6%, что усиливает необходимость проведения мероприятий, направленных на борьбу с этими ФР [141, 138, 59].

Кроме того, психоэмоциональные факторы, такие как стресс, тревога и депрессия, играют важную роль в развитии АГ. Например, исследование "MONICA - PSYCHOSOCIAL" в Новосибирске показало, что стресс в семейной среде существенно увеличивает риск развития АГ. Согласно данным ЭССЕ РФ, общая распространенность субклинического/клинического уровней тревоги и депрессии в РФ составила 46,3% и 25,6% соответственно [58]. В проведенном несколько позже в других 15 регионах РФ ЭССЕ РФ-3, уровни тревоги и депрессии были ниже и составили 26,1% и 20,5% соответственно [50]. Разница в частоте встречаемости тревоги и депрессии в двух эпидемиологических работах может объясняться

региональными особенностями, включенных в исследования регионов РФ.

Таким образом, региональные особенности распространённости факторов риска, включая метаболические, психоэмоциональные и поведенческие, подчёркивают необходимость разработки индивидуализированных стратегий профилактики и лечения АГ, особенно в регионах с высокой распространенности АГ, таких как РО.

Профилактика ССЗ считается приоритетом общественного здравоохранения, поскольку ранняя идентификация соответствующих ФР может быть важным шагом в оценке ССР и его управлении в рамках непрерывного ухода. В связи с этим было разработано множество шкал для оценки ССР. Шкалы оценки риска, такие как SCORE и SCORE2 [5], широко применяются для прогнозирования сердечнососудистых событий (ССС). Однако результаты стратификации риска по шкалам SCORE и SCORE2 могут существенно различаться [24]. В РО, по результатам исследования МЕРИДИАН-РО, среди 1622 человек в возрасте 25-64 лет, доля лиц с высоким и очень высоким риском составляла 23,1% [64]. Однако исследований с использованием шкалы SCORE2 в РО нами не обнаружено.

Инструментальные методы диагностики, такие как эхокардиография (ЭхоКГ) и ультразвуковое исследование (УЗИ) сосудов, предоставляют важную информацию о структурных изменениях сердца и сосудов, включая утолщение стенок артерий и увеличение размеров полостей сердца. В российском исследовании на популяционной выборке (n=1100) в возрасте 40−64 лет частота АСБ в сонных артерий (СА) составила 74,5% у мужчин и 58% у женщин. Доля пациентов с максимальным стенозом ≥50% достигала 2,6% [9]. Однако, несмотря на доступность методов ЭхоКГ и УЗИ сосудов, их использование в эпидемиологических исследованиях, таких как ЭССЕ-РФ и МЕРИДИАН-РО, не проводилось.

Неблагоприятные клинические исходы, такие как инфаркт миокарда (ИМ), инсульт, хроническая сердечная недостаточность (ХСН) и смерть от ССС, демонстрируют значительную региональную вариабельность. Это связано с различиями в уровне АД, приверженности пациентов к лечению и доступности

медицинской помощи. Например, данные проспективного наблюдательного исследования ЭССЕ-РФ, проведённого в 11 регионах России, показали, что наличие АГ, статистически значимо снижает выживаемость. Наиболее неблагоприятные результаты были зарегистрированы у пациентов, принимающих антигипертензивные препараты, но не достигающих целевых уровней АД [15]. В исследовании, проведённом в Тюмени, было установлено, что относительный риск сердечно-сосудистой смерти увеличивался при уровнях систолического давления (САД) ≥141 мм рт. ст. и диастолического (ДАД) ≥86 мм рт. ст. Особенно у женщин риск возрастал при систолическом давлении ≥152 мм рт. ст. [53].

Эти данные подчёркивают важность изучение вклад ФР ССЗ, в сочетании с инструментальными методами диагностики, такими как ЭхоКГ и УЗИ сосудов в риск развитие ССС на региональном уровне что позволит учитывать не только общенациональные тенденции, но и значительные региональные различия в частоте неблагоприятных исходов.

В литературе приводится информация о случайном повышении АД при офисном однократном измерении, что в ряде случаев не является основанием для вынесения диагноза ГБ и назначения последующего обследования и лечения [109, 102, 209]. Несмотря на высокую распространённость ФР ССЗ, исследования этих факторов не только у лиц, страдающих ГБ, но и у лиц с однократным повышенным офисным АД (ПОфАД) на региональном уровне в доступных источниках не обнаружено.

Таким образом, проведение динамического исследования, ориентированного на анализ ФР, характеристик состояния пациентов, эффективности терапии на региональном уровне, представляет собой важную и актуальную задачу. Такие исследования позволяют учитывать региональные особенности распространённости заболеваний, выявлять основные причины неблагоприятных клинических исходов, а также разрабатывать целенаправленные стратегии профилактики и лечения.

Степень разработанности темы исследования

Исследования подтверждают важность изучения ФР, структурнофункциональных изменений сердца и сосудов, а также методов оценки ССР у пациентов с АГ. Однако многие аспекты остаются недостаточно изученными, особенно на региональном уровне, что в настоящее время считается чрезвычайно актуальным [132, 228].

На международном уровне установлено, что АГ является ведущим ФР ССЗ и преждевременной смертности [224]. Среди основных ФР выделяют также возраст, ожирение, дислипидемию, курение, нарушения углеводного обмена, повышенную ЧСС и психоэмоциональные расстройства [5]. По данным ЭССЕ-РФ, в России гиперхолестеринемия встречается у 56,3% мужчин и 58,4% женщин, а сочетание АГ и дислипидемии наблюдается у 40% пациентов. Распространенность ожирения также растет, особенно среди женщин [38, 51].

В РО, согласно результатам исследования МЕРИДИАН-РО, ожирение отмечено у 41,1% мужчин и 43,2% женщин, а 84,1% населения имеют повышенные уровни ОХС и ЛНП. ЧСС более 85 уд/мин зафиксирована у 15,6% участников, что значительно увеличивает ССР [59, 64]. Однако данные ФР изучены в общей популяции населения РО. Среди других ФР важными признаются нарушения углеводного обмена: по данным NATION, предиабет выявлен у 19,3% обследованных [19], но в РО этот показатель может быть недооценен из-за недостаточного скрининга среди пациентов с АГ.

В этом контексте особую роль играют современные шкалы оценки риска, такие как SCORE2, которые обладают высокой чувствительностью и специфичностью, что делает их важным инструментом для прогнозирования ССС и оптимизации лечебных подходов у пациентов с АГ [5].

Эти данные подчеркивают необходимость углубленного изучения ФР в РО, учитывая социально-экономические и демографические особенности региона для разработки целевых профилактических стратегий для снижения ССР.

В различных регионах России показатели осведомлённости, лечения и

контроля АГ существенно различаются. Например, по данным ЭССЕ-РФ, в 12 регионах осведомлённость о наличии АГ составила 67,5% у мужчин и 78,9% у женщин, при этом антигипертензивные препараты принимали 60,9% женщин и 39,5% мужчин. Однако эффективное лечение наблюдалось лишь у 53,5% женщин и 41,4% мужчин, а контроль АД достигался только у трети женщин и 14,4% мужчин [8]. В исследовании ЭССЕ-РФ2, охватившем четыре региона, включая РО, результаты оказались схожими: осведомлённость составила 76,8% среди женщин и 69,4% среди мужчин, но контроль АД достигался лишь у 24,9% пациентов [47].

В РО, по данным исследования ЭПОХА, в 2007 г. антигипертензивную терапию получали 79,9% пациентов, но лишь 16,6% из них лечились эффективно. К 2016 г. ситуация улучшилась: антигипертензивную терапию получали 89,5% пациентов, однако контроль АД достигался лишь у 37,3% пациентов [6]. Низкие показатели приверженности лечению и контроля АД в РО подчёркивают необходимость детального изучения факторов, влияющих на приверженности к антигипертензивной терапии в конкретных регионах, учитывая региональные демографические и социально-экономические особенности для разработки адаптированные подходы к улучшению лечения.

Кроме того, высокие уровни САД ≥110–115 мм рт. ст. связаны с наибольшей долей смертей от ССЗ, включая 53% смертей от ИБС и инсульта [77]. В Prospective Studies Collaboration показано, что повышение САД на 20 мм рт. ст. удваивает риск смерти от ИБС и инсульта [126]. Согласно данным ЭССЕ-РФ, АГ существенно снижает выживаемость, особенно при отсутствии достижения целевых уровней АД [15]. В Новосибирске, Тюмени и Томске исследования показали, что АГ значительно увеличивает риск смертности [53, 7, 16]. В РО, согласно МЕРИДИАН-РО, АГ оказывает наибольшее влияние на ККТ, включая нефатальный инсульт, ИМ и смертность от ССС [32].

В отечественных исследованиях, таких как ЭССЕ-РФ и МЕРИДИАН-РО, выявлена высокая распространённость АГ и сопутствующих метаболических нарушений среди взрослого населения России и отдельных регионов, включая РО [8, 59].

Достаточно большое количество участников исследования ЭССЕ-РФ2 в РО имели однократное ПОфАД при отсутствии указаний на наличие диагноза ГБ (246 человек, 15,1%). Эта группа в разные годы описывается в литературе не только среди лиц молодого возраста [209, 109], на которых делается особый акцент, но и среди взрослых с высоким ССР [102, 211]. Поэтому мы решили выделить данную группу для оценки ФР и прогноза, а также для сравнения с пациентами с подтвержденным диагнозом ГБ.

Таким образом, представляется перспективным изучение ФР, клинического статуса и факторов, определяющих эффективность лечения как у пациентов с ГБ, так и у лиц с однократным ПОфАД на примере населения РО с высокой распространенностью АГ и высоким уровнем ССР. Актуальным направлением в этой работе также является сравнительная оценка шкал SCORE и SCORE2, инструментальных методов диагностики (ЭхоКГ, УЗИ сосудов), а также неблагоприятных исходов при долгосрочном наблюдении (7 лет) у пациентов с ГБ и с однократным ПОфАД для своевременного прогнозирования возникновения ССЗ и оптимизации лечебно-профилактических мероприятий.

Цель исследования

Сравнительная оценка факторов риска, состояния сердечно-сосудистой системы и сердечно-сосудистых событий у больных, страдающих гипертонической болезнью и лиц с однократным повышением офисного артериального давления при 7-летнем наблюдении для ранней стратификации риска и профилактики сердечно-сосудистых заболеваний.

Задачи исследования

1. Изучение факторов риска сердечно-сосудистых заболеваний в популяции населения Рязанской области, страдающих гипертонической болезнью и лиц с однократным повышением офисного артериального давления.

- 2. Установление взаимосвязи факторов риска сердечно-сосудистых заболеваний с данными эхокардиографии, ультразвукового исследования сонных и бедренных артерий у пациентов с гипертонической болезнью и лиц с однократным повышением офисного артериального давления.
- 3. Оценка риска по шкале SCORE и SCORE2 у пациентов, страдающих гипертонической болезнью и лиц с однократным повышением офисного артериального давления.
- 4. Изучение факторов, влияющих на эффективность антигипертензивного лечения и приверженность к нему у пациентов с артериальной гипертензией.
- 5. Выявление неблагоприятных исходов и их предикторов при 7-летнем наблюдении по оценке конечных точек (инфаркт миокарда, ишемическая болезнь сердца, инсульт, хроническая сердечная недостаточность, смерть от сердечнососудистых заболеваний) у больных гипертонической болезнью и лиц с однократным повышением офисного артериального давления

Научная новизна исследования

Выявлена высокая распространённость метаболических нарушений как среди пациентов с АГ, так и лиц с ПОфАД в РО, включая дислипидемию, нарушения углеводного обмена, избыточный вес, ожирение и психоэмоциональные ФР, при этом их частота оказалась выше по сравнению с данными, полученными в исследованиях, проведённых на общероссийской популяции.

Установлена статистически значимая прямая связь структурных изменений сердца и сосудов с ФР, а именно изменения размеров ЛП, а также увеличение ТИМ по данным УЗИ СА и БА коррелируют с возрастом, антропометрическими показателями, такими как ИМТ и окружность талии, а также с нарушениями липидного обмена, включая ЛВП, ЛНП и ТГ.

Выявлен высокий ССР по шкале SCORE у 14,7% больных с АГ. Дополнительными факторами риска стали ИМТ, окружность талии, ДАД, глюкоза

и HbA1c. По шкале SCORE2 высокий риск установлен у 62% лиц 40-64 лет, при этом различий по частоте между группами с АГ и ПОфАД не обнаружено (62,7% и 60,1%, p=0,560).

Выявлена низкая частота достижения целевого уровня АД среди пациентов с ГБ в Рязанском регионе, особенно среди мужчин, что связано с преобладанием монотерапии и недостаточной приверженностью к лечению. Установлено, что эффективность контроля АД снижалась с возрастом и была выше у пациентов, проживающих в семье.

Определены ключевые предикторы неблагоприятных клинических исходов при длительном наблюдении, включая повышенный ССР, нарушения углеводного обмена и психоэмоциональные факторы. Социально-экономические характеристики, такие как наличие работы и уровень обеспеченности, показали протективное влияние на возникновение сердечно-сосудистых событий.

При долговременном (7-летнем наблюдении) показана сопоставимая частота неблагоприятных клинических исходов между пациентами с диагностированной ГБ и лицами с однократным ПОфАД, что подчеркивает у последних важность своевременной диагностики ГБ и адекватных профилактических и лечебных мероприятий.

Теоретическая и практическая значимость

Работа расширяет теоретические представления о комплексных ФР, влияющих на развитие и прогрессирование АГ и её осложнений. Исследование подтверждает роль метаболических нарушений, таких как дислипидемия, гипергликемия и избыточный вес, а также структурных изменений сердца и сосудов в патогенезе ССЗ. Установлена связь между социально-экономическими характеристиками, психоэмоциональными факторами и клиническими исходами, что подчеркивает важность учёта не только биологических, но и социальных аспектов при изучении гипертензии. Полученные результаты обосновывают необходимость комплексной оценки пациентов с использованием шкал оценки

риска, инструментальных методов диагностики и показателей приверженности к лечению. Теоретическая значимость работы заключается в углублении понимания механизмов формирования осложнений гипертензии и в обосновании подходов к раннему выявлению групп высокого риска, что позволяет разработать более эффективные стратегии профилактики и лечения.

Результаты работы имеют важное практическое значение для клинической медицины и организации здравоохранения. Определены ключевые ФР развития сердечно-сосудистых осложнений у пациентов с АГ в РО, такие как метаболические нарушения, структурные изменения сердца и сосудов, высокий психоэмоциональные факторы. Выявлена низкая эффективность назначенной антигипертензивной терапии и недостаточная приверженность пациентов к лечению, что требует оптимизации тактики ведения пациентов. Полученные данные подтверждают целесообразность использования шкал оценки риска (SCORE2) и инструментальных методов диагностики (ЭхоКГ, УЗИ СА и БА) для раннего выявления групп высокого риска. Практическая значимость заключается в разработке рекомендаций по улучшению контроля АД, повышению приверженности к лечению и внедрению комплексного подхода к профилактике осложнений с учётом социальных, психологических и клинических факторов. Эти результаты могут быть использованы в клинической практике, для создания образовательных программ и при планировании профилактических мероприятий в группах риска.

Методология и методы исследования

Исследование основано на данных эпидемиологического исследования ЭССЕ-РФ-2, выполненного в Рязанском регионе (1632 лиц), из которых включено 713 обследованных с АД выше или равно 140/90 мм рт.ст. при двухкратном измерении, или принимающих антигипертензивные препараты. Участники разделены на две группы для сравнения: группа А – больные с установленным диагнозом ГБ, принимающие как минимум один антигипертензивный препарат и

группа Б - исследуемые с однократным ПОфАД, но без установленного диагноза ГБ и не принимающие антигипертензивные препараты. Исследование включает ретроспективную и проспективную части. Ретроспективная часть заключалась в оценке и сравнение между групп по ФР АГ и сопутствующих метаболических нарушений на основе первичных данных анкетирования, клинических измерений и лабораторных показателей. Проспективная часть предусматривала 7-летнее наблюдение для оценки различий в КТ, таких как ИМ, инсульт, ХСН и смерть от ССЗ. Инструментальные методы диагностики включали проведение ЭхоКГ для анализа структурно-функциональных изменений сердца и УЗИ сосудов для комплекса (TVM) измерения толщины интима-медиа выявления атеросклеротических бляшек (АСБ). Статистическая обработка данных проводилась с использованием современных методов медицинской статистики для оценки ФР, выявления корреляций и прогностической значимости показателей в контексте ССР.

Личный вклад

Автором самостоятельно проведен всесторонний анализ современных литературных источников по изучаемой проблеме. При активном участии автора была сформулирована тема работы, определены её цели и задачи, а также разработаны методы и этапы проведения исследования. Автор принимал непосредственное участие в сборе первичной документации, включая заполнение больного, ЭССЕ-РФ», «Карты включенного в исследование приверженности к лечению и карт КТ. Он также участвовал в организации процесса мониторинга и верификации КТ. Автором самостоятельно создана региональная база данных, включающая все результаты анкетирования, результаты общеклинических, лабораторных и инструментальных исследований участников. Автор также принимал непосредственное участие в подготовке публикаций, других печатных материалов, устных и постерных докладов.

Положения, выносимые на защиту

- 1. Установлена высокая распространённость метаболических нарушений (дислипидемия, нарушения углеводного обмена, избыточная масса тела и ожирение) у больных с АГ и лиц с ПОфАД среди популяции населения РО, что подтверждает необходимость комплексного подхода к диагностике и лечению для снижения ССР.
- 2. Структурные изменения сердца и сосудов, такие как утолщение комплекса интима-медиа и наличие атеросклеротических бляшек, выявляются у значительной части пациентов с артериальной гипертензией. Эти изменения коррелируют с возрастом, антропометрическими показателями и уровнем метаболических нарушений как у больных с ГБ, так и у лиц с однократным ПОфАД.
- 3. Ключевыми предикторами неблагоприятных исходов у больных с АГ при 7-летнем наблюдении являются высокий сосудистый риск (SCORE>5), повышенные уровни HbA1c и фибриногена, депрессия и низкий социально-экономический статус, тогда как наличие работы и высокий уровень обеспеченности оказывают протективное влияние.
- 4. Эффективность назначенной антигипертензивной терапии остаётся низкой, целевые значения АД достигаются менее чем у половины пациентов, что обусловлено недостаточной приверженностью к лечению, которая имеет зависимость от возраста и семейного положения.
- 5. Отсутствие значимых различий в долгосрочных исходах между пациентами с диагностированной ГБ и лицами с ПОфАД, без диагноза ГБ указывает на необходимость раннего выявления и активного ведения групп высокого риска.
- 6. Комплексная оценка ФР, использование новой шкалы ССР SCORE2 и дополнительных предикторов неблагоприятного прогноза, инструментальных методов диагностики (ЭхоКГ, УЗИ СА и БА), в том числе у лиц с ПОфАД позволяют своевременно выявлять группы риска и оптимизировать тактику профилактики и лечения сердечно-сосудистых осложнений.

Внедрение результатов исследования в практику

Результаты исследования внедрены в амбулаторную, клиническую и лечебно-диагностическую деятельность ГБУ РО «Областной клинический кардиологический диспансер», Центра общественного здоровья и медицинской профилактики РО, кафедры госпитальной терапии с курсом медико-социальной экспертизы и кафедры поликлинической терапии, профилактической медицины и общей врачебной практики ФГБОУ ВО РязГМУ имени академика И.П. Павлова.

Соответствие диссертации паспорту научной специальности

Диссертационная работа соответствует пунктам 5, 6, 12, 13, 14, 15 паспорта научной специальности 3.1.20. Кардиология (медицинские науки).

Степень достоверности и апробация результатов

Достоверность результатов исследования базируется на изучении и анализе фактического материала и статистической обработке полученных результатов с использованием стандартных методик современной медицинской статистики. Полученные выводы и практические рекомендации основы на результатах, полученных в ходе исследования. В ходе работы подвергнут анализу достаточный объем отечественных и зарубежных источников литературы.

Результаты проведенного исследования были доложены на следующих научно-практических мероприятиях: Межрегиональной научно-практической конференции с международным участием «Клинические рекомендации, клиническое мышление и клинические примеры в современной терапевтической практике» (Рязань, 18-19 ноября 2022 г.); Ежегодной научной конференции Рязанского государственного медицинского университета имени академика И.П. Павлова, посвященной Десятилетию науки и технологий (Рязань, 16 декабря 2022 г.); I Съезде терапевтов ЦФО, посвященном 150-летию со дня рождения С.С.

Зимницкого и 80-летию РязГМУ имени академика И.П. Павлова (Рязань, 8-9 июня 2023 г.); І Рязанском кардиологическом конгрессе (Рязань, 11 ноября 2023 г.); Ежегодной научной конференции, посвященной Десятилетию науки и технологий и 80-летию Рязанского государственного медицинского университета имени академика И.П. Павлова (Рязань, 6 декабря 2023 г.); Республиканской научнопрактической конференции «Актуальные вопросы кардиологии» (Донецк, 8 декабря 2023 г.); 22-м Европейском конгрессе внутренних болезней ЕСІМ 2024 (Стамбул, 6-9 марта 2024 г.); Российском национальном конгрессе кардиологов 2024 (Санкт-Петербург, 26-28 сентября 2024 г.).

Публикации по теме диссертации

По материалам исследования опубликовано 12 печатных работ, из них 4 статьи в рецензируемых научных журналах, рекомендованных ВАК при Минобрнауки России для публикации результатов диссертационных исследований, в том числе 1 – в журнале, входящем в цитатно-аналитическую базу данных Scopus.

Структура и объем диссертации

Диссертация включает введение, обзор литературы, материалы и методы исследования, результаты и их обсуждение, выводы, практические рекомендации и список литературы. Список литературы содержит 64 отечественных и 165 зарубежных источников.

Диссертационная работа изложена на 169 страницах машинописного текста, проиллюстрирована 43 рисунками, 27 таблицами.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Артериальная гипертензия в Российской Федерации и Рязанской области: эпидемиология, заболеваемость, смертность

 Γ Б – хронически протекающее заболевание, основным проявлением которого является повышение АД, не связанное с выявлением явных причин, приводящих к развитию вторичных форм АГ (симптоматические АГ). Термин «ГБ», предложенный Γ . Ф. Лангом в 1948 Γ ., соответствует терминам «эссенциальная гипертензия» и «АГ», используемым за рубежом [5].

B мета-анализе, проанализировавшем 844 исследований, данные проведённых в 154 странах с участием 8,69 миллиона человек, было установлено, что среднее возрастное стандартизированное САД в мире составило 127,0 мм рт. ст. у мужчин и 122,3 мм рт. ст. у женщин, в то время как среднее возрастное стандартизированное ДАД составило 78,7 мм рт. ст. у мужчин и 76,7 мм рт. ст. у женщин [228]. Более высокие средние значения САД и ДАД как у мужчин, так и у женщин были зафиксированы в Южной Азии, странах Африки к югу от Сахары, а также в Центральной и Восточной Европе, в то время как более низкие значения АД наблюдались в странах с высоким уровнем дохода в Западной Европе и Азиатско-Тихоокеанском регионе. Социальные и экологические факторы, такие как доступ к медицинской помощи, наличие антигипертензивных препаратов, а также региональные различия в ФР гипертонии, включая ожирение, употребление алкоголя, нездоровое питание и недостаточную физическую активность, вероятно, способствуют этим региональным различиям [228, 132].

АГ является одним из самым распространенных заболеваний в мире. Согласно данным ВОЗ за 2023 г., ею страдают 1,28 миллиарда взрослых в возрасте от 30 до 79 лет. Стандартизированная по возрасту распространенность АГ среди взрослого населения в этой возрастной группе составляет 34% у мужчин и 32% у женщин. При этом около 46% взрослых с гипертензией не осведомлены о наличии заболевания. Только у 42% пациентов АГ диагностирована, и они получают

лечение, и только у 21% заболевание находится под контролем [224, 176]. Следует отметить, что распространенность АГ значительно варьирует в зависимости от региона, что связано с различиями в экономическом развитии, доступе к медицинской помощи, культурными особенностями и образом жизни. Самая низкая распространенность АГ у мужчин была отмечена в Южной Азии (26,4%), в то время как самая высокая распространенность была в Восточной Европе и Центральной Азии (39,0%) (Рисунок 1.1, 1.2) [171].

Точное определение уровня АД и распространённости гипертонии в мире во многом зависит от доступности и качества данных, полученных в ходе популяционных исследований. На качество таких данных могут влиять различные факторы, включая репрезентативность выборки (например, методы отбора и уровень отклика участников), методы измерения АД (например, калибровка приборов для измерения давления, использование манжет соответствующего размера и подготовка участников), а также количество измерений [118]. Во многих странах популяционные исследования АД не проводились или данные о давлении не находятся в открытом доступе. Более того, количество исследований и качество доступных данных значительно различаются между регионами. В результате для некоторых стран оценки уровня АД основаны исключительно на моделировании в рамках нескольких объединённых проектов [130, 132]. Эта проблема особенно актуальна для стран Африки к югу от Сахары, где данные об АД крайне ограничены [93]. Необходимы качественные популяционные исследования, которые точно измеряют АД во всех странах, особенно в странах с низким и средним уровнем дохода, для более точной оценки глобального бремени гипертонии.

АГ является основным ФР развития ССЗ и тесно коррелирует с повышением риска возникновения ИМ, инсульта, ишемической болезни сердца (ИБС) и ХСН. [67]. В 2015 г. повышенное АД стало основной причиной преждевременной смерти во всем мире, на его долю пришлось почти 10 миллионов смертей и более 200 миллионов лет жизни с поправкой на инвалидность [171]. Влияние АГ на общую смертность зависит от возраста начала заболевания. Так, при диагностике

гипертензии до 45 лет риск смертности увеличивается в 2,5 раза, тогда как при постановке диагноза после 65 лет этот риск повышается менее чем на 30%. [147].

АГ связана с существенным финансовым бременем. Расходы включают прямые затраты на медицинское обслуживание, такие как расходы на медикаменты, лабораторные тесты и посещения клиник, а также расходы, связанные с госпитализациями из-за осложнений, вызванных повышенным АД. Кроме того, существуют косвенные затраты, связанные с потерей продуктивности, вызванной преждевременной смертностью и инвалидностью из-за ССЗ и почечных заболеваний, связанных с гипертонией [124]. Глобальное финансовое бремя, связанное с повышенным давлением, оценивалось в 2009 г. примерно в 370 миллиардов долларов США, что составляло около 10% от общемировых расходов на здравоохранение. Однако, наблюдались значительные региональные различия в затратах на медицинское обслуживание. Например, в Восточной Европе и Центральной Азии на АГ приходилось 22,6% всех расходов на здравоохранение, тогда как в Восточной Азии и Тихоокеанском регионе — всего 7,2% [124].

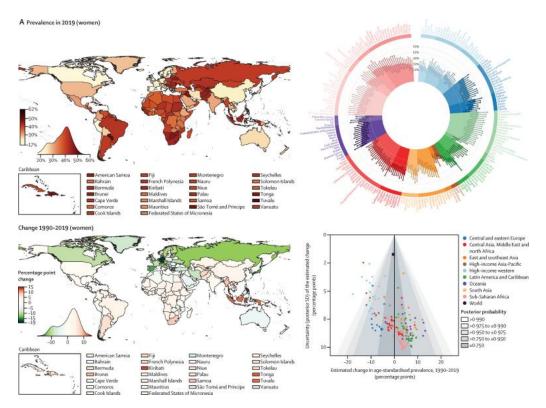


Рисунок 1.1 — Распространенность гипертонии в 2019 г. и изменения с 1990 г. по 2019 г. среди женщин [171].

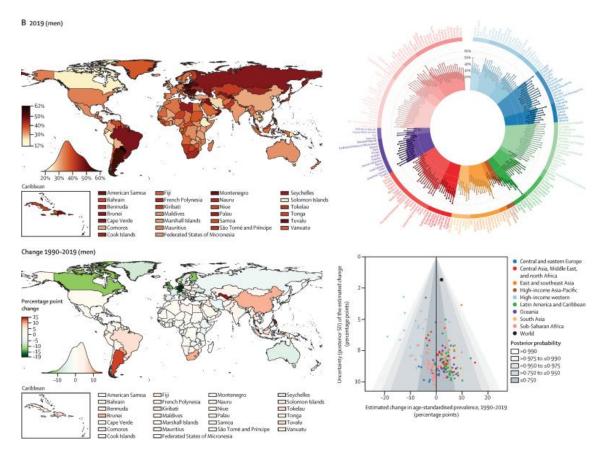


Рисунок 1.2 – Распространенность гипертонии в 2019 г. и изменения с 1990 г. по 2019 г. среди мужчин [171].

В российской популяции среди мужчин в возрасте 25—64 лет распространенность АГ несколько выше (в некоторых регионах достигает 47%), в то время как среди женщин она составляет около 40% [8].

Согласно данным исследования ЭССЕ-РФ2, проведенного в четырех регионах Российской Федерации (РФ) (Краснодарский край, Омская область и РО, Республика Карелия), среди лиц в возрасте 25-64 лет распространенность АГ составила 44,2%. Наивысший показатель был зафиксирован в РО, где распространенность достигала 50,2% (52,8% у мужчин и 47,1% у женщин) [47]. При этом данные российского национального эпидемиологического исследования при ХСН "ЭПОХА", проведенного в это же время (2016 г.) показали несколько меньшие значения: стандартизованная по возрасту и полу распространенность АГ в Рязанском регионе составила 43,9% [6]. Учитывая полученные данные, подчеркивающие как высокую распространенность АГ в РО, так и их разноречивость, продолжение изучения эпидемиологии АГ в данном регионе

является крайне важным для разработки эффективных профилактических и лечебных стратегий.

Анализ глобального бремени болезней в России показал, что в 2016 г. более 33% всех смертей было связано с высоким САД [125]. Смертность от АГ в различных регионах РФ за период с 2013 г. по 2019 г. показывает неоднородные тенденции. Несмотря на общее снижение стандартизованного коэффициента смертности от АГ в России в 1,7 раза, существенные региональные различия сохраняются. В некоторых регионах наблюдаются волнообразные изменения коэффициентов смертности от АГ. Коэффициент смертности от АГ в РО с 2013 г. по 2019 г. демонстрирует значительное снижение. В 2013 г. стандартизованный коэффициент смертности от АГ составлял 4,94 на 100 000 населения, а к 2019 г. он снизился до 1,09 на 100 000 населения, что отражает улучшение показателей по сравнению с началом периода. В то же время, изменение коэффициентов было волнообразным, показывая как снижение, так и незначительные увеличения в разные годы [55].

Исходя из этих данных, важно продолжать изучение эпидемиологии АГ в РО для более глубокого понимания факторов, влияющих на динамику смертности, а также для разработки эффективных стратегий профилактики и лечения АГ.

1.2. Изучение факторов риска артериальной гипертензии и их распространенность

Классически выделяют ряд основных ФР развития АГ, каждый из которых вносит свой вклад в патогенез заболевания. Эти факторы включают: пол, возраст, курение, дислипидемии, повышенный уровень мочевой кислоты, нарушение углеводного обмена, избыточная МТ и ожирение, семейный анамнез развития ССЗ в раннем возрасте, ранняя менопауза, малоподвижный образ жизни, психологические и социально-экономические факторы, ЧСС выше 80 уд/мин [5].

Эти ФР играют важную роль в формировании и прогрессировании АГ, оказывая влияние на структуру и функцию сосудистой системы, а также на общее

состояние здоровья человека. Развитие АГ является мультифакториальным процессом, где каждый из перечисленных факторов может оказывать значительное влияние, требующее комплексного подхода к профилактике и лечению заболевания. Исследование INTERHEART показало, что наличие одного ФР увеличивает общий риск ССС в два-три раза, тогда как наличие АГ, дислипидемии, сахарного диабета и курения приводит к более чем 20-кратному увеличению общего риска ССС [115].

1.2.1. Дислипидемия

Дислипидемии – состояния, когда концентрации липидов и липопротеидов крови выходят за пределы нормы, могут быть вызваны как приобретенными (вторичными), так и наследственными (первичными) причинами [20].

Согласно клиническим рекомендациям по АГ Российского кардиологического общества (2020 г.), дислипидемия у лиц с АГ определяется как ОХС >4,9 ммоль/л и/или ЛНП (липопротеины низкой плотности) >3 ммоль/л и/или ЛВП (липопротеины высокой плотности) у мужчин — <1,0 ммоль/л (40 мг/дл), у женщин — <1,2 ммоль/л (46 мг/дл) и/или триглицериды (ТГ) >1,7 ммоль/л [5].

Дислипидемия и АГ являются признанными ФР, имеющими первостепенное значение в развитии ССЗ и важными компонентами метаболического синдрома (МС), как это определено в Руководстве Национальной программы по образованию в области холестерина (NCEP) (Панель по лечению взрослых III) [217].

В крупном китайском исследовании, проведенном на более чем 115 тысячах пациентов, было показано, что индексы атеросклероза были выше в популяции с гипертонией по сравнению с популяцией с нормальным АД. САД и ДАД линейно и положительно коррелировали с индексами атеросклероза. Кроме того, многофакторный логистический регрессионный анализ показал, что индекс холестерина и уровень не-липопротеинов высокой плотности (не-ЛВП) были положительно связаны с распространенностью гипертонии [100]. При АГ дислипидемия может усугублять развитие атеросклероза через следующие

механизмы.1) Хронический стресс, приводящий к окислительному стрессу, нарушению окислительно-восстановительного баланса и увеличению активности ферментов окисления липидов, вызывает окисление ЛНП [164]. 2) Повышенное АД усиливает связывание ангиотензина II с рецептором типа 1, что приводит к увеличению поглощения липидов стенками сосудов [156].

По данным ЭССЕ-РФ, проведенного в 13 регионах РФ с включением 21048 человек, дислипидемия в России встречается часто: каждый второй взрослый пациент имеет гиперхолестеринемию (56,3% мужчин, 58,4% женщин), каждый четвертый — гипертриглицеридемию (30,8% мужчин, 22,8% женщин), каждый шестой — гиперлипопротеинемию (а) (13,2% мужчин, 15,2% женщин) [3]. При этом сочетание АГ и любой дислипидемии составляет 40% всех наблюдений [51]. Также по данным МЕРИДИАН-РО, проведенном в популяции населении РО, независимо от уровня АД, отмечалась высокая частота дислипидемии: повышенные значения ОХС более 5 ммоль/л отмечались у 58,1% обследованных, ОХС более 5 ммоль/л или ЛНП более 2,5 ммоль/л — у 84,1% населения [59].

1.2.2. Нарушения углеводного обмена

Еще одним «метаболическим» ФР БСК являются нарушения углеводного обмена, к которым относятся нарушение гликемии натощак: глюкоза плазмы натощак 5,6–6,9 ммоль/л; нарушение толерантности к глюкозе; СД.

Согласно данным Международной диабетической федерации, в настоящее время в мире от СД страдают около 425 миллионов человек в возрасте 20-79 лет [151]. Прогнозируется, что к 2030 г. эта цифра возрастет и, вероятно, превысит 552 миллиона. В 2019 г. в РФ общая численность пациентов с СД, по данным федерального регистра составила 4 962 762 человека (3,31% населения) [1]. Согласно исследование NATION, среди 26 620 человек распространённость СД была выше и составила 5,4%. Следует отметит, что у 2,9% диагноз СД был поставлен впервые что подчёркивает то, что количество пациентов с СД в РФ остается недооценёнными [19].

Однако не только сам диабет, но и преддиабетические состояния, включая не диагностированный СД, нередко сопровождают АГ или могут стать ее причиной [14]. В мета-анализе, включавшем 53 проспективных когортных исследования с участием 1 611 339 человек со средней продолжительность наблюдения 9,5 лет, было выявлено что преддиабет связан с повышенным риском ССЗ (ИБС, инсульт и смертность от всех причин) [84]. В японском исследование у 2210 пациентов было выявлено, что уровень глюкозы натощак ≥7,0 ммоль/л увеличивает риск развития АГ [140]. Похожая картина наблюдалась в исследование у китайских женщин, где высокий уровень глюкозы натощак в значительной степени был связан с риском развития АГ, особенно у женщин с более высоким ОХС [113]. В ходе ретроспективного когортного исследования в Корее, где была изучена распространенность АГ и ее связь с уровнем глюкозы в крови натощак, высокий уровень глюкозы в крови был независимым ФР развития АГ [149]. Следует отметить, что преддиабет и АГ вызывают дисфункцию эндотелия и воспаление, повышая уровень растворимых молекул адгезии и воспалительных цитокинов [204].

В РФ в исследовании NATION у 19,3% участников был выявлен преддиабет. Данные показатели колебались от одного региона к другому, при этом самая высокая распространённость преддиабета наблюдалась в центральном федеральном округе [19]. В РО, согласно исследованию, проведённому на 118 пациентах мужского пола с ГБ, у 13% выявлено нарушение толерантности к глюкозе, а у 23% впервые диагностирован СД 2 типа [63].

Таким образом, для нарушения углеводного обмена характерен повышенный риск развития ССЗ и ухудшение течения АГ. Распространенность таких состояний как преддиабет и диабет, может быть недооценена, особенно в РО, где не проводились масштабные исследования для оценки нарушений углеводного обмена у лиц, страдающих ГБ или с однократным ПОфАД без диагноза, что требует более точной диагностики и профилактики, особенно у лиц с повышением АД.

1.2.3. Избыточная масса тела и ожирение

Избыточная МТ (ИМТ 25-29,9 кг/м²) и ожирение (ИМТ \geq 30 кг/м²), являются независимыми ФР АГ [5, 178, 81]. По данным ВОЗ, с 1990 г. число случаев ожирения среди взрослых во всем мире увеличилось более чем в два раза, а среди подростков - в четыре раза. В 2022 г. избыточную МТ имели 2,5 миллиарда взрослых в возрасте от 18 лет и старше, из них более 890 миллионов взрослых страдали ожирением [225]. В 2019 г. ИМТ, превышающий оптимальный, стал причиной примерно 5 миллионов смертей от ХНИЗ [126]. Более 50% людей, страдающих ожирением в мире, живут всего в 10 странах (перечисленных в порядке убывания числа людей, страдающих ожирением): США, Китае, Индии, России, Бразилии, Мексике, Египте, Пакистане, Индонезии и Германии [134]. Распространенность ожирения в России не только остается высокой, но и год от года увеличивается. Так, среди мужчин распространенность ожирения возросла с 10.8% в 1993 г. до 27,9% в 2018 г., среди женщин – с 26,4% до 31,8% соответственно [2]. При этом отмечается вариабельность распространённости ожирения в зависимости от регионов, так большая распространенность ожирения отмечена среди женщин Воронежской, Тюменской и Кемеровской областей и среди мужчин - в Ивановской и Воронежской областях. Наименьшая - среди женщин Санкт-Петербурга и Самарской области и среди мужчин в Волгоградской и Самарской областях [38]. РО занимает лидирующие позиции по распространенности ожирения. Согласно данным исследования МЕРИДИАН-РО, среди мужчин распространенность ожирения по ИМТ составила 41,1%, а среди женщин – 43,2% [59].

Кроме того, пациенты с АГ и ожирением характеризуются более высоким уровнем ССЗ и смертности [91, 131], а также склонны к развитию резистентной к лечению гипертензии [210]. По данным исследований, включающих 34 538 человек из восьми когорт, генетически обусловленное увеличении ИМТ на 1–2 единицы приводит к повышению уровня САД на 0,7–0,9 мм рт. ст. и ДАД на 0,5 мм рт. ст. [98].

В России согласно данным исследования ЭССЕ РФ наблюдается прямая связь между избыточной МТ, распространенностью АГ и увеличением средних значений САД и ДАД. В группе с избыточной МТ частота встречаемости АГ составляет 45,8% среди мужчин и 38,5% среди женщин, что превышает в два раза соответствующие показатели у лиц с нормальной МТ [38].

Таким образом, избыточная МТ и ожирение являются значимыми ФР АГ и связаны с повышением ССС и резистентной гипертензии. В России распространенность ожирения продолжает расти, особенно в таких регионах, как РО, поэтому изучение ожирения и избыточной МТ имеет критическое значение для улучшения профилактики и лечения АГ и сопутствующих заболеваний.

1.2.4. Курение

Курение табака на протяжении десятилетий являлось одной из крупнейших проблем здравоохранения в мире. В течение XX века оно унесло жизни около 100 миллионов человек, большинство из которых проживали в странах с высоким уровнем дохода [154]. В настоящее время бремя заболеваний, вызванных курением, смещается из стран с высоким доходом в страны с низким и средним уровнем дохода. По некоторым оценкам в XXI веке от последствий курения могут погибнуть до одного миллиарда человек [169]

Курение является одним из наиболее значимых ФР для развития ГБ и ССЗ в целом. [170, 73]. Влияние курения на АД многогранно и проявляется как в краткосрочном, так и в долгосрочном аспектах. При курении происходит активация симпатической нервной системы, что вызывает временное повышение АД и ЧСС [101]. Однако регулярное курение в долгосрочной перспективе способствует устойчивому повышению АД, ухудшению функции сосудов и повышению жесткости артерий, что увеличивает риск развития гипертонии и ее осложнений, таких как инсульт и ИМ [80, 115, 145].

По данным ВОЗ на 2020 г. около 1,3 миллиарда человек во всем мире являются курильщиками, и около 8 миллионов смертей ежегодно связаны с

последствиями курения, в том числе и с ССЗ, такими как гипертония [225]. Интересно отметить, что около 80% курильщиков проживают в странах с низким и средним уровнем дохода, где уровень медицинской помощи и профилактики ССЗ часто ограничен, что еще больше усугубляет эпидемиологическую ситуацию (Рисунок 2) [200].

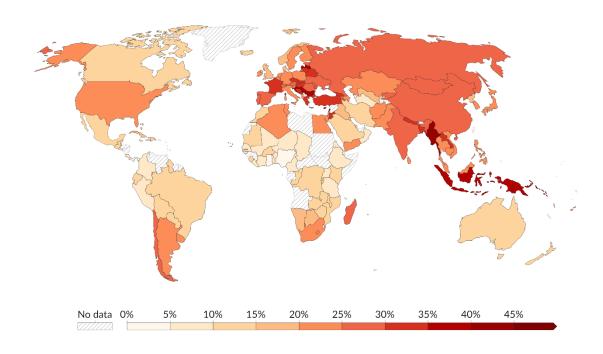


Рисунок 2 — Доля людей в возрасте 15 лет и старше, которые курят какие-либо табачные изделия ежедневно или нерегулярно. Многочисленные источники, собранные Всемирным банком (2024 г.) [200].

В России курение также является серьезной проблемой общественного здравоохранения так как распространенность курения является одной из наиболее высоких в мире, особенно среди мужчин [219]. По данным Роспотребнадзора, в 2022 г. более 33% взрослого населения России продолжают курить, несмотря на снижение числа курильщиков за последние годы. Среди мужчин курит около 51%, среди женщин – 14% [18]. РО не является исключением и по данным исследования ЭПОХА, распространенность курения за 5 лет значимо не изменилась и составила 23,9% против 25,1% в 2007 г. и 2012 г. соответственно [57]. В 2019 г. распространённость табакокурение в РО немного снизилась и составила 21,6% [56].

Важно отметить, что курение не только способствует развитию гипертонии, но и ухудшает контроль над заболеванием у тех, кто уже страдает гипертонией.

Курящие пациенты с гипертонией более подвержены осложнениям, им требуется более интенсивная терапия для контроля АД по сравнению с некурящим пациентам [110, 85].

Таким образом, изучение курения как ФР ГБ является важным направлением как в медицинских исследованиях, так и в программах общественного здравоохранения. Борьба с курением посредством профилактики, образовательных программ и отказа от табака может существенно снизить бремя ССЗ, включая гипертонию, как в мире, так и в России.

1.2.5. Повышенная частота сердечных сокращений

Повышенная ЧСС является ФР АГ, ССЗ и смертности как у здоровых людей, CC3, подтверждается так пациентов что многочисленными эпидемиологическими исследованиями [144, 195, 141, 202]. Повышенная ЧСС признана негативным прогностическим фактором, независимым от многих других клинических параметров, таких как уровень физической активности, функция левого желудочка (ЛЖ) или применение бета-блокаторов (ББ). Таким образом, ЧСС соответствует всем эпидемиологическим критериям для признания её истинным ФР, а её прогностическая ценность для ССЗ сопоставима с большинством других ключевых ФР. Это особенно верно в отношении пациентов с АГ [144]. Повышенная ЧСС часто встречается среди лиц с АГ. В исследовании HARVEST среди молодых пациентов с гипертонией у более чем 15% наблюдалась исходная ЧСС в покое ≥ 85 уд/мин, а у $27\% - \ge 80$ уд/мин. [138]. Согласно исследованию Tensiopulse, которое охватило 38 145 пациентов, за которыми наблюдали 2000 врачей общей практики по всей Италии, более чем у 30% пациентов с АГ, ЧСС в покое была ≥80 уд/мин. [139]. В большом французском исследовании среди пациентов с нелеченой гипертонией, ЧСС была в среднем на 6 уд/мин выше, чем у нормотоников. Повышенная ЧСС часто связана с высоким АД и метаболическими нарушениями, что увеличивает риск развития гипертонии и диабета [87].

Основной причиной повышения ЧСС при АГ является повышение активности симпатической нервной системы, вегетативный дисбаланс и нарушение барорефлекторной регуляции кровообращения [33]. В исследовании Тесumseh Blood Pressure было обнаружено, что у 37% всех пациентов с нелеченой пограничной и/или легкой гипертензией наблюдалось гиперкинетическое состояние с повышенной ЧСС, кровотоком в предплечье и уровнем норадреналина в плазме, что приводило к высокому симпатическому тонусу и снижению парасимпатического тонуса [143].

В России, по данным ЭССЕ-РФ, где были представительные выборки из неорганизованного мужского и женского населения в возрасте от 25-64 лет из 13 регионов РФ, практически каждый пятый человек имеет частоту пульса более 80 уд/мин. Распространенность повышенной ЧСС в разных регионах варьирует – у мужчин наибольшая отмечается в Оренбурге (33,1%), Осетии (Алании) (29,7%) и Волгограде (27,6%), наименьшая – в Самаре (9,4%). У женщин наибольшая ЧСС выявлена во Владивостоке (37,4%), наименьшая – в Самаре (8,1%) [27]. По данным МЕРИДИАН-РО, в РО ЧСС >85 уд. /мин наблюдался у 15,6% выборки [32].

Таким образом, изучение и контроль повышенной ЧСС имеет важное значение в борьбе с гипертонией, что требует комплексного подхода, включающего изменение образа жизни и медицинскую терапию для снижения риска ССЗ и улучшения качества жизни пациентов.

1.2.6. Стресс, тревога и депрессия

АГ нередко сопровождается психологическими проявлениями, которые могут существенно влиять на качество жизни пациентов и ухудшать прогноз [191, 103]. Известно, что стресс может приводить к увеличению АД, риску развития ГБ и запускать развитие ССЗ [99, 215, 163]. В рамках исследования "MONICA - PSYCHOSOCIAL" в Новосибирске было обнаружено, что наибольшая вероятность развития АГ за 10 лет наблюдалась у мужчин, связанным со стрессом в семейной среде [21].

Следует также обратить внимание на смежные со стрессом аспекты психического здоровья, такие как тревога и депрессия. Так, по данным ВОЗ, у более чем 301 миллионов человек в мире отмечаются тревожные и у 280 миллионов – депрессивные расстройства [45]. Тревожные расстройства являются наиболее распространенным психиатрических состояний, классом включающим генерализованное тревожное расстройство, социальное тревожное расстройство, тревожное расстройство разлуки, фобии и паническое расстройство [88, 205]. В Соединенных Штатах Америки национальный опрос 2019 г. показал, что 4,7% респондентов сообщили о регулярных проявлениях депрессии, в то время как 11,2% участников указали на тревожные состояния [112]. Популяции с низким доходом особенно уязвимы к депрессии и тревоге, поскольку имеют как больший риск возникновения этих состояний [196], так и ограниченный доступ к соответствующему лечению [142].

Согласно данным ЭССЕ РФ, общая распространенность субклинического/клинического уровней тревоги и депрессии в РФ составила 46,3% и 25,6% соответственно [58]. В проведенном несколько позже в других 15 регионах РФ ЭССЕ РФ-3, уровни тревоги и депрессии были ниже и составили 26,1% и 20,5% соответственно [50]. Разница в частоте встречаемости тревоги и депрессии в двух эпидемиологических работах может объясняться региональными особенностями, включенных в исследования регионов РФ. Так, в ЭССЕ-3 распространенность тревоги составила 22,0 % в Тюмени (самая низкая) и 59,8 % в Республике Саха (самая высокая), то есть отличалась более чем в 2,7 раза.

Тревога, вызванная хроническим стрессом и депрессией, может привести к развитию ССЗ через несколько механизмов. Нарушение баланса симпатической и парасимпатической нервной системы, а также повышение уровня кортизола и адреналина вызывают тахикардию, гипертонию и гипергликемию [222, 74]. Хронический стресс активирует цитокины, что приводит к хроническому воспалению и нарушению функции эндотелия [221, 89]. Наконец, эти состояния способствуют нездоровому поведению, такому как употребление алкоголя, курение, переедание и снижение физической активности [214].

Вместе с тем, в ЭССЕ-РФ оценка распространённости данных психических нарушений в отдельной когорте больных АГ не проводилась. Аналогично и в МЕРИДИАНЕ-РО, где установлено, что частота клинически значимой составила 62,0%, тревоги/депрессии ИЗ них 5,2% испытывали сильную тревогу/депрессию, а 56,8% – умеренную. Однако взаимосвязь с АГ не оценивалась [60].

Таким образом, изучение стресса, тревоги и депрессии как ФР АГ крайне важно. Эти состояния нарушают нервную регуляцию, вызывают воспаление и способствуют развитию ССЗ. Высокая распространенность психоэмоциональных расстройств, особенно среди пациентов с АГ, требует дополнительного внимания для улучшения профилактики и лечения.

В связи с этим, анализ представленных данных подтверждает чрензвычайную важность изучения ФР ССЗ, особенно на региональном уровне. Своевременное выявление ФР является основой для эффективной профилактики ССЗ и позволяет более точно идентифицировать группы высокого и очень высокого риска. Это особенно актуально для популяций с высоким уровнем ССР, таких как население РО, где значительная доля жителей имеет повышенный ССР.

1.3. Оценка сердечно-сосудистого риска по шкалам SCORE и SCORE2

Профилактика ССЗ считается приоритетом общественного здравоохранения, поскольку ранняя идентификация соответствующих ФР может быть важным шагом в оценке ССР и его управлении в рамках непрерывного ухода.

В связи с этим было разработано множество шкал для оценки ССР. Первая научная модель оценки ССР была создана на основе многолетнего эпидемиологического исследования, проведённого в течение более 12 лет в городе Фрамингем, штат Массачусетс, США. Модель учитывает возраст и пол пациента, АД, статус курения, уровни ОХС или ЛНП и ЛВП, а также наличие сахарного диабета. Недостатком Фрамингемской шкалы является то, что она была разработана для американской популяции [189, 127].

В Европе первое руководство, касающееся оценки ССР, было опубликовано в 1994 г. в рекомендациях по профилактике ИБС [187] в виде рекомендации Совместной европейской рабочей группы (Европейского общества кардиологии, Европейского общества атеросклероза и Европейского общества АГ), основанной на результатах исследования Фрамингемского исследования. Это руководство предоставило врачам удобную модель оценки ССР и содержало принципы и практические варианты снижения ССР. В 1998 г. оно было пересмотрено во Второй рекомендации Совместной европейской рабочей группы, в которой для оценки риска использовались возраст, пол, курение, САД, уровень ОХС и наличие диабета [188].

Третье издание рекомендаций Совместной европейской рабочей группы было опубликовано в 2003 г. [121]. В отличие от первых двух рекомендаций, оно было основано на европейской эпидемиологической базе данных (12 когортных исследований и данных по 205178 пациентам), которая различает страны с низким и высоким риском, и не измеряет вероятность развития ССЗ, а оценивает вероятность смертельного ССС с использованием шкалы риска SCORE (Systematic Coronary Risk Evaluation). Соответственно, значения для категорий риска смертности были изменены на: низкий риск − <2%; умеренный риск − 2−4,9%; высокий риск − 5−9,9%; очень высокий риск − ≥10%. Руководство Совместной рабочей группы 2003 г. также определяет области, цели и инструменты для вмешательства, аналогичные, но более широкие по сравнению с предыдущими рекомендациями.

Интерпретация шкала SCORE была скорректирована в рекомендациях 4-й Европейской рабочей группы в 2007 г. [122]. В частности, на основе данных когортного исследования проекта MONICA было изменено соотношение между десятилетним риском сердечно-сосудистой смерти и глобальным ССР. Если в рекомендациях 2003 г. высокий риск сердечно-сосудистой смерти (>5 % в ближайшие 10 лет) соответствовал глобальному риску ССС >20 % (в ближайшие 10 лет), то в рекомендациях 2007 г. риск смерти в 5 % уже приравнивался к 10%-му глобальному риску. Однако понятие высокого риска, определенное как риск

смерти >5 % в ближайшие 10 лет, продолжало использоваться для достижения целевого уровня ЛНП <2,5 ммоль/л. В результате, в 2007 г. европейские рекомендации значительно отклонились от американских, где с 2002 г. целевое снижение ОХС основывается на риске нефатального ИМ или сердечной смерти >20 % [148].

В 2016 г. было опубликовано шестое издание рекомендаций Совместной европейской рабочей группы [66]. Оно основывалось на принципах, изложенных в 2003 г., и на базе данных SCORE, используя шкалу SCORE для оценки риска. В нем была применена обновленная методология оценки риска.

Последние рекомендации по этой теме были опубликованы в 2021 г. Европейским обществом кардиологии [70], и они внесли значительные изменения по сравнению с рекомендациями 2016 г. Введена новая шкала оценки ССР - SCORE2, в которой не только изменены параметры, необходимые для оценки риска (не-ЛВП вместо предыдущего ОХС или ЛНП), но также расширяет возрастной диапазон с 65 до 69 лет и создаёт шкалу оценки для людей в возрасте 70 лет и старше (SCORE2-OP). Кроме того, данная шкала учитывает как фатальные, так и нефатальные ССС, что изменяет процентную классификацию категорий ССР.

В России еще в 2000 г. был опубликован первый доклад экспертов, подготовленный научным обществом по изучению АГ, Всероссийским научным обществом кардиологов и Межведомственным советом по ССЗ [26]. Доклад был разработан на основе рекомендаций Всемирной организации здравоохранения и Международного общества по изучению АГ (ВОЗ/МОАГ) 1999 г. В этом докладе впервые была отмечена четкая градация степени ССР в зависимости от качественных изменений: ФР – средний ССР, поражение органов- мишеней – высокий ССР, наличие ассоциированных заболеваний и состояний – очень высокий ССР При этом для количественной оценки риска используются методики расчета риска ИБС в течение 10 лет, предложенные Европейским обществом кардиологов, Европейским обществом по атеросклерозу и Европейским обществом по гипертонии. Общий риск сердечно-сосудистых осложнений рассчитывается с учетом риска ИБС.

В первых российских рекомендациях по диагностике и лечению АГ, которые легли в основу приказа Министерства здравоохранения РФ № 4 от 24 января 2003 г., опубликованных в 2001 г., впервые была представлена шкала SCORE для быстрой оценки уровня риска. Это стало важным шагом в интеграции использования данной шкалы в медицинскую практику.

На основании данных многоцентрового исследования ЭССЕ-РФ, проведенного на репрезентативной выборке неорганизованного мужского и женского населения в возрасте 25-64 лет из 13 регионов, установлено, что 31,3% обследованных, включая 42,2% мужчин и 30,9% женщин, имели высокий и очень высокий ССР [22]. При стратификации ССР в когорте пациентов с ГБ данные показатели становятся еще выше. Например, в исследовании на 143 пациентах с ГБ 1-2 степени в возрасте от 29 до 88 лет, 82% пациентов имели высокий или очень высокий риск [24]. В другой когорте, состоящей из 150 человек (104 мужчины и 46 женщин) в возрасте от 40 до 64 лет, впервые обратившихся к врачу с устойчивым повышением АД, у 44,0% был зафиксирован высокий или очень высокий риск [31].

Следует отметить, что результаты стратификации риска по шкалам SCORE и SCORE2 могут существенно различаться [95, 182]. Например, в исследовании, охватывающем 10 199 человек без установленных ССЗ, хронической болезни почек и сахарного диабета, в возрасте от 40 до 65 лет, было выявлено, что только 7,0% имели высокий и очень высокий риск по шкале SCORE, в то время как по шкале SCORE2 этот показатель составил 94,7% [43].

Аналогичные результаты были получены в исследовании на условноздоровых лицах европейской этнической группы в возрасте 40-49 лет, где по шкале SCORE только 2,5% имели высокий и очень высокий риск, однако по шкале SCORE2 этот показатель достигал 89,6% [12]. В ретроспективном когортном исследовании, включающем 100 пациентов в возрасте от 40 до 65 лет, обратившихся к терапевтам, врачам общей практики и кардиологам, только 21% имели высокий или очень высокий риск по шкале SCORE, тогда как все пациенты были отнесены к данным группам при расчете с помощью шкалы SCORE2 [40]. Это подчеркивает важность использования в повседневной практике более современной шкалы.

В РО, по результатам исследования МЕРИДИАН-РО, среди 1622 человек в возрасте 25-64 лет, доля лиц с высоким и очень высоким риском составляла 23,1%, что более чем на 10% больше, чем в общероссийской популяции и может отражать особенности в РО [64]. В последующем исследований с использованием шкалы SCORE2 в РО к моменту начала нашего исследования не проводилось.

Учитывая данные исследования, демонстрирующие значительные различия в результатах стратификации ССР при использовании различных шкал, таких как SCORE и SCORE2, а также отсутствие крупных исследований по стратификации риска у пациентов с ГБ или ПОфАД без диагноза ГБ, становится очевидной необходимость дальнейшего изучения этих шкал у данной группы больных. Особенно это актуально в популяциях с высоким уровнем ССР, и значительным уровенем проживающих лиц в возрасте 60 лет и старше, таких как население РО. Проведение стратификации риска с использованием современных шкал, таких как SCORE2, позволит более точно определять группы высокого и очень высокого риска, включая лиц гериатрического возраста, что, в свою очередь, обеспечит более эффективное планирование профилактических и терапевтических мероприятий. Это особенно важно для улучшения прогнозов и снижения смертности от ССЗ на региональном уровне.

1.4. Изучение структурных изменений сердца и сосудов при артериальной гипертензии

Вопрос ремоделирования сердечно-сосудистой системы при различных патологических состояниях, особенно при АГ, становится все более актуальным для научных исследований. Это связано с тем, что структурные и функциональные изменения, происходящие в сердце и сосудах при ГБ, представляют собой не только компенсаторную реакцию организма, но и самостоятельный фактор, способствующий дальнейшему прогрессированию заболевания и являющийся независимым негативным прогностическим показателем.

Изменение при ГБ включают в себя микро- и макроскопические изменения миокарда, структурные, фенотипические и функциональные изменения, которые включают сердечный фиброз и ремоделирование отдельных сердечных камер и артериальной системы [177, 94]. Гипертензивное сердце является диагностическим и прогностическим маркером, который часто проявляется в виде субклинического состояния, предвещающего неблагоприятные исходы в более поздней жизни [123], или же может проявляться как явная черта у людей с уже существующими ССЗ, где оно указывает на худший прогноз в краткосрочной перспективе [111].

В связи с этим ЭхоКГ рекомендуется при АГ для оценки структуры и функции сердца, что может существенно повлиять на выбор тактики лечения. Кроме того, для выявления поражений органов-мишеней рекомендуется проведение УЗИ сосудов [5].

Одно из первых описаний ремоделирования ЛЖ было опубликовано в основополагающем труде Уильяма Харви почти столетие назад [137]. В то время считалось, что дилатация ЛЖ имеет неблагоприятный прогноз, а гипертрофия рассматривалась исключительно как компенсаторная реакция, направленная на смягчение вредных последствий дилатации ЛЖ [157].

Закон Лапласа помогает понять процесс ремоделирования ЛЖ. В этой модели напряжение стенки ЛЖ коррелирует с давлением в полости и радиусом. По мере увеличения напряжения стенки увеличивается потребность миокарда в кислороде и нарушается сокращение миокарда, что приводит к компенсаторному увеличению толщины стенки с целью нормализации систолического напряжения стенки [129, 92]. В последние годы появление новых методов визуализации, таких как тагтированная МРТ и 2D и 3D спеклтрекинговая ЭхоКГ (STE), позволило получить дополнительные сведения о вредном влиянии АД на региональные и глобальные механические функции ЛЖ (продольные и циркулярные деформации ЛЖ, диссинхронию ЛЖ и торсию ЛЖ) [175, 106, 161, 75]. Так как структурные и функциональные нарушения ЛЖ предшествуют развитию ССЗ, они имеют прогностическое значение для широкого спектра клинических исходов и выживаемости у бессимптомных людей и у пациентов с явными заболеваниями.

[117, 162]. Вклад различных фенотипов ремоделирования ЛЖ в риск ССЗ до конца не изучен. Однако исследования, которые анализировали использование новых индексов, сочетающих структурные и функциональные компоненты ЛЖ, показали их дополнительную прогностическую ценность по сравнению с отдельными компонентами ремоделирования ЛЖ [160, 107, 190].

В клинических рекомендациях Российского кардиологического общества по $A\Gamma$ (2020 г.) указано, что ЭхоКГ признаками ГЛЖ (гипертрофия левого желудочка) являются индекс массы ЛЖ (масса ЛЖ, г/рост, м) формула ASE для пациентов с избыточной МТ и ожирением: для мужчин >50 г/м^{2,7}, для женщин >47 г/ м^{2,7}; индексация на площадь поверхности тела (масса ЛЖ/рост, м²) для пациентов с нормальной МТ: >115 г/м² (мужчины) и >95 г/м² (женщины) [5].

Прошлые исследования, посвященные гипертоническому поражению сердца, в основном фокусировались на ГЛЖ. Однако последние данные подчеркивают наличие более широкого спектра взаимосвязанных структурных и функциональных адаптаций сердца и сосудов, которые могут проявляться как по отдельности, так и в комбинации в ответ на повышенное АД [165, 183, 212].

Структурные и функциональные изменения ЛП являются еще одной общей характеристикой гипертонического поражения сердца [218, 128, 159]. Ремоделирование ЛП тесно связано с геометрическими и функциональными изменениями ЛЖ, но также может происходить независимо [86, 105]. Несмотря на то, что данные, описывающие влияние системной гипертензии на ПЖ недостаточно, ремоделирование ПЖ может быть не таким редким явлением при гипертоническом поражении сердца. В одном из исследований, проведенном Кагауе, К. М и соавторами, среди 186 участников с гипертоническим поражением сердца у 33% была выявлена систолическая дисфункция ПЖ [82].

Еще одним изменением структуры сердца является ремоделирование правого предсердия (ПП), однако таких исследований еще меньше, чем работ, посвященных ремоделтрованию ПЖ. Основная роль ПП заключается в обеспечении наполнения ПЖ, он действует как резервуар для системного венозного возврата при закрытом трехстворчатом клапане, пассивный проводник в

фазу ранней диастоле при его открытии и активный проводник в фазу поздней диастоле [135]. Несмотря на то, что ремоделирование ПП имеет прогностическое значение для клинических исходов [197, 198], мало исследований фокусировались на независимом влиянии системной гипертензии на структуру и функцию ПП у пациентов без клапанной патологии или легочной гипертензии. В небольшом исследовании, проведенном на 114 пациентах с использованием данных 3D-ЭхоКГ, системная гипертензия была связана с ухудшением систолического напряжения ПП, увеличением объема ПП и снижением фракции выброса (ФВ) ПП [153]. Кроме того, несколько исследований предоставили доказательства взаимосвязи между гипертензией и ремоделированием ПЖ, а также тем, как эти изменения могут впоследствии влиять на здоровье сердца. В двух предыдущих исследованиях было установлено, что повышение АД связано с неблагоприятными субклиническими изменениями структуры и функции ПЖ, даже при отсутствии легочной патологии [199, 193].

В диагностической практике обычно выполняется дуплексное сканирование экстракраниального отдела брахиоцефальных артерий, а также, реже, БА. Этот метод позволяет оценить как качественные атеросклеротические, так и количественные параметры. УЗИ СА или БА — это неинвазивный, доступный и информативный метод диагностики, который является безопасным и относительно недорогим по сравнению с магнитно-резонансной томографией. Наиболее изученным показателем для оценки риска развития атеросклеротического поражения сосудов и их ремоделирования при ССЗ, который широко применяется при УЗИ сосудов, является толщина интима-медии (ТИМ) [65].

Предыдущие исследования показали, что увеличение ТИМ значительно связано с ССС [150, 167]. В мета-анализе, включавшем восемь исследований, в которых суммарно принимали участие 37197 человек, было выявлено, что увеличение ТИМ на 0,1 мм ассоциировалось с увеличением риска возникновения ИМ с 10% до 15%, а риска возникновения инсульта с 13 до 18% [181].

Традиционные сердечно-сосудистые ФР, такие как пожилой возраст, АГ, диабет, дислипидемия, курение и другие, приводят к увеличению ТИМ [97, 114].

Среди них особенно тесная связь наблюдается между АД и ТИМ: многочисленные поперечные исследования указывают на то, что повышенное АД тесно коррелирует с увеличением ТИМ как у людей с гипертонией, так и без нее [152, 192].

В настоящее время увеличение ТИМ, также, считается одним из факторов доклинических атеросклеротических поражений и органом-мишенью, повреждаемым в результате гипертонии [213, 206]. Значительное утолщение стенки артерий может способствовать дальнейшему повышению АД через возможные механизмы, такие как нарушение функции эндотелия сосудов и растяжение барорецепторов в аорте и каротидном теле [168]. Предыдущее исследование, проведенном Najjar, S. S. и соавторами подтвердило, что показатели, отражающие жесткость артерий, были связаны с развитием гипертонии [223]. Однако неизвестно, существует ли сильная связь между увеличением ТИМ, отражающим изменения сосудистой структуры, и возникновением недавно развившейся гипертонии.

Нормальные значения ТИМ и референсные диапазоны зависят от возраста и пола - с возрастом наблюдается значительное устойчивое повышение ТИМ во всех сегментах СА [76, 96] и значительно более высокие значения ТИМ у мужчин, чем у женщин [104]. Вопрос о том, какие значения ТИМ следует считать аномальными, остается спорным. Связь между ТИМ и ССР является непрерывной, и дихотомизация этого параметра (т.е. определение порогового значения ТИМ) будет некорректной. Тем не менее, следует отметить, что в рекомендациях ESH/ESC ТИМ СА> 0,9 мм был вновь подтвержден как маркер асимптоматического поражения органов мишеней, хотя было доказано, что у пациентов среднего и пожилого возраста пороговые значения, указывающие на высокий ССР, выше [207]. Рабочая группа Американского общества эхографии (ASE) рекомендует считать ТИМ ≥ 75-го процентиля высоким и указывающим на повышенный ССР. Значения от 25-го до 75-го процентиля считаются средними и свидетельствуют об неизмененном ССР. Значения ≤ 25-го процентиля считаются низкими и указывают на более низкий, чем ожидаемый, ССР [220].

Существуют также более консервативные предложения по пороговым значениям: ТИМ, равный или превышающий 97,5-й процентиль с поправкой на возраст, должен считаться аномальным (и предсказателем повышенного сосудистого риска). Причина в том, что в крупном поперечном исследовании связь ТИМ общей СА с сосудистым риском была выявлена только для значений, попадающих в высший квинтиль популяционных значений.

В мировых исследованиях сообщается, что у лиц старше 70 лет значимый атеросклероз СА выявляется в 9,3%, а среди лиц младше 70 лет − в 3,6% [184]. В российском исследовании на популяционной выборке (n=1100) в возрасте 40–64 лет частота АСБ в СА составила 74,5% у мужчин и 58% у женщин. Доля пациентов с максимальным стенозом ≥50% достигала 2,6% [9].

Несмотря на доступность методов ЭхоКГ и УЗИ сосудов, их использование в эпидемиологических исследованиях ФР ССЗ, таких как ЭССЕ-РФ и МЕРИДИАН-РО, не проводилось. Кроме того, важно изучать применение этих методов не только в общей популяции, но и сравнивать параметры ЭхоКГ и УЗИ сосудов у пациентов с ГБ и у лиц с однократным ПОфАД.

Таким образом, использование ЭхоКГ и УЗИ, особенно с измерением ТИМ, имеет ключевое значение для диагностики и мониторинга гипертензивных пациентов. Эти методы позволяют выявить самые ранние признаки поражения органов-мишеней и оценить риск ССЗ. Особенно это актуально у лиц, не имеющих диагноза ГБ и соответственно не находящихся на диспансерном наблюдении, но у которых имеется эпизодической повышение АД, например, при офисном измерении при проведении эпидемиологического скриннинга и у которых может иметься недиагностированная АГ.

1.5. Оценка лечения и приверженности к лечению у больных с ГБ

Лечение и контроль АГ имеют решающее значение для профилактики ССЗ [108]. Согласно руководствам ESC по лечению повышенного АД (2024 г.), рекомендациям АСС/АНА (2020 г.) и РКО (2020 г.), целевой уровень АД составляет

120–129/70–79 мм рт. ст., при условии, что такое лечение переносится пациентом. В некоторых случаях, когда существует индивидуальная непереносимость или другие противопоказания, может быть рекомендован более щадящий режим лечения [72, 69, 5]. Несмотря на это, уровень осведомленности о гипертензии, а также показатели лечения и контроля варьируют значительно между странами. [185, 186, 116, 166]. По данным 2019 г., уровень контроля АГ составлял 23% (20–27%) у женщин и 18% (16–21%) у мужчин. Наибольшие показатели лечения и контроля АГ были зафиксированы в Южной Корее, Канаде и Исландии (лечение >70%; контроль >50%). За ними следуют США, Коста-Рика, Германия, Португалия и Тайвань.

В таких странах, как Непал, Индонезия и некоторых странах Африки к югу от Сахары, а также Океании, показатели лечения были ниже 25% у женщин и ниже 20% у мужчин. Уровень контроля АГ в этих странах был ниже 10% как у женщин, так и у мужчин. В странах Северной Африки, Центральной и Южной Азии, а также Восточной Европы показатели контроля у мужчин также были ниже 10%.

Несмотря на улучшения в большинстве стран с 1990 г., особенно в странах с высоким доходом, Центральной Европе и некоторых странах со средним доходом, таких как Коста-Рика, Тайвань, Казахстан, Южная Африка, Бразилия, Чили, Турция и Иран, в странах Африки к югу от Сахары и Океании наблюдалось незначительное изменение в уровне лечения и контроля АГ (Рисунок 3) [176].

В России, согласно данным исследования ЭССЕ-РФ, проведенного в 12 регионах, осведомленность о наличии АГ составила 67,5% среди мужчин и 78,9% среди женщин. Антигипертензивные препараты принимали 60,9% женщин и 39,5% мужчин. Следует отметить, что эффективное лечение наблюдалось у 53,5% женщин и 41,4% мужчин. Однако контроль АД был достигнут лишь у трети женщин и у 14,4% мужчин [8]. Согласно данным исследования ЭССЕ-РФ2, проведенного несколько позже в четырех регионах РФ, включая РО, осведомленность о наличии АГ была выше среди женщин (76,8%) по сравнению с мужчинами (69,4%). Антигипертензивные препараты принимали 65,5% женщин и 41,8% мужчин. При этом лишь 49,7% пациентов с АГ получали эффективное

лечение. Контроль АД был достигнут только у 24,9% лиц с гипертензией [47].

Рисунок 3 — Каскад лечения АГ в 2019 г. для женщин и мужчин в мире и по регионам [176].

Аналогичные результаты были получены при анализе демографических и медицинских данных пациентов, наблюдавшихся в амбулаторно-поликлинических учреждениях в ряде регионов РФ с 2019 г. по 2022 г. У 51,5% пациентов не удавалось достичь целевых значений АД. Среди пациентов с неконтролируемой АГ отмечались более высокие уровни ЛНП, частота недостижения целевых значений ЛНП <2,6 ммоль/л была выше в 1,3 раза, а также чаще выявлялось ожирение (в 1,3 раза) [29]. В исследовании, проведённом в 21 регионе России с участием 5394 человек, было отмечено, что пациенты старшего возраста чаще осознавали наличие повышенного АД. Большая часть пациентов этой возрастной группы получала

антигипертензивную терапию (73,6%), однако только половина из них достигала целевого уровня A I < 140/90 мм рт. ст. При ужесточении критериев до < 130/80 мм рт. ст., количество пациентов, достигших целевых показателей, сокращалось вдвое. Среди молодых пациентов антигипертензивную терапию получали лишь 11%, однако у 75% из них наблюдался удовлетворительный контроль АД [44]. В РО, по данным исследования ЭПОХА, наблюдается улучшение показателей осведомленности и контроля АД. В 2007 г. лишь 79,9% пациентов с АГ получали антигипертензивную терапию, и только 16,6% из них лечились эффективно. К 2016 г. этот показатель улучшился: 89,5% пациентов получали АГТ, и 37,3% лечились с достижением эффективного контроля АД [6]. Более высокие результаты были получены в исследовании МЕРИДИАН-РО, проведённом в 2012 г. Среди пациентов с АГ антигипертензивные препараты принимали 82,2% горожан и 80,8% жителей сельской местности. Эффективное лечение наблюдалось у 41,0% пациентов [59].

Таким образом, несмотря на достигнутый прогресс, многие пациенты не достигают целевых показателей АД, что увеличивает риск ССС. Различия в осведомленности, доступе к лечению и его эффективности между регионами подчеркивают необходимость дальнейшего анализа факторов, влияющих на контроль АГ. Это поможет выявить барьеры в лечении, адаптировать подходы к терапии и улучшить исходы для пациентов, особенно в условиях различных демографических и экономических реалий.

1.6. Суммарная оценка фатального и нефатального риска при артериальной гипертензии

ВОЗ неизменно относит гипертонию к числу причин заболеваемости и смертности № 1 во всем мире [71, 79]. Фактически, высокое давление повышает риск смерти даже при САД в диапазоне от 115 до 130 мм рт. ст., что ниже порогового значения для лечения гипертонии в большинстве рекомендаций [77]. Высокое САД (т.е. ≥110–115 мм рт. ст.) является ведущим ФР смертности в мире,

вызывая больше смертей, чем любой другой поведенческий, метаболический или экологический ФР [126]. Если бы все взрослые в мире в 2019 г. имели теоретически минимальный уровень САД (оцененный как 110–115 мм рт. ст.), примерно 19% всех смертей в мировом масштабе (10,8 миллиона) могли бы быть предотвращены в этом году [133]. В глобальном масштабе в 2019 г. более половины всех сердечнососудистых смертей были связаны с высоким САД – включая все случаи смерти от ГБ, 53% смертей от ИБС и 53% смертей от инсульта. Кроме того, 62% смертей от хронической болезни почек также связаны с высоким САД. В сумме эти смерти от высокого САД составляют 18% всех мужских смертей и 20% всех женских смертей. Хотя 62% смертей, связанных с высоким САД, происходят среди людей в возрасте 70 лет и старше, 38% – 4 миллиона смертей – происходят среди взрослых младше 70 лет. Эта пропорция еще выше в странах с низким и средним уровнем дохода, где 42% смертей, связанных с высоким АД, происходят среди людей младше 70 лет [133].

Наблюдательные эпидемиологические исследования продемонстрировали значимую и линейную зависимость между АД и риском ССЗ, без выявления какого-либо порогового значения давления [77, 203, 208, 90]. Например, в исследовании Prospective Studies Collaboration была проанализирована связь между уровнем АД и причиной смертности у примерно 1 миллиона людей в возрасте 40-89 лет, которые не имели истории ССЗ на момент начала исследования. Используя данные из 61 проспективного наблюдательного исследования [77], зарегистрировано 56 000 случаев смерти от ССЗ (включая 12 000 от инсульта, 34 000 от ИБС и 10 000 от других ССЗ и 66 000 случаев смерти от других причин). Мета-анализы, скорректированные с учетом погрешностей измерений, показали, что риск смерти от ССЗ при одинаковом повышении АД был примерно одинаковым для каждого десятилетия возраста, начиная с уровней 115 мм рт. ст. для САД и 75 мм рт. ст. для ДАД. [77]. У людей в возрасте 40-69 лет разница в САД на 20 мм рт. ст. или разница в ДАД на 10 мм рт. ст. была связана с более чем двукратной разницей в уровне смертности от инсульта и двукратной разницей в уровне смертности от ИБС и других причин ССЗ. Хотя пропорциональная разница

в смертности от ССЗ, связанная с абсолютной разницей в АД, у людей в возрасте 80–89 лет была примерно в два раза меньше, чем у лиц в возрасте 40–49 лет, ежегодные абсолютные различия в риске были более выраженными у пожилых людей.

У взрослых в возрасте от 35 лет и старше САД является более значимым показателем риска ССЗ, чем ДАД [208, 90]. Например, в исследовании, в котором участвовали 347 978 мужчин в возрасте от 35 до 57 лет, отобранных для участия в Multiple Risk Factor Intervention Trial (MRFIT) в США и не имевших ранее госпитализаций по поводу ССЗ, было зафиксировано 7 150 случаев смерти от ИБС и 733 случая смерти от инсульта в среднем за 11,6 лет наблюдения [208]. Во всех десятых группах АД, САД имело более сильную связь с риском ИБС и инсульта по сравнению с ДАД. Сравнение самых высоких и самых низких десятых групп показало, что относительные риски, связанные с повышением САД и ДАД, составляют 3,7 и 2,8 соответственно для ИБС, и 8,2 и 4,4 соответственно для инсульта.

В России, в рамках проспективного наблюдательного исследования ЭССЕ-РФ, проведенного в 11 регионах страны с участием 18 251 человека в возрасте от 25 до 64 лет, было выявлено, что наличие АГ статистически значимо снижает выживаемость, что значимо при поправке на возраст. Наиболее неблагоприятные результаты по выживаемости наблюдаются у пациентов с АГ, которые принимают антигипертензивные препараты, но не достигают целевых уровней АД [15]. Аналогичные результаты были получены в ходе 12-летнего проспективного наблюдения за жителями города Тюмени, где относительный риск смерти от ССЗ увеличивался при уровнях САД ≥141 мм рт. ст. и ДАД ≥86 мм рт. ст. Особо следует отметить, что риск ССС у женщин значительно возрастал при САД ≥152 мм рт. ст. и ДАД ≥95 мм рт. ст. [53]. В Новосибирске в рамках проекта МОNICA проводилось когортное исследование с 1984-85 гг. по 1994-95 гг., целью которого было изучение частоты АГ в зависимости от уровня АД и оценка 10-летнего суммарного риска смерти от ССЗ. Полученные результаты показали, что у пациентов с АГ риск смерти от ССЗ возрастает с увеличением уровня АД: чем выше показатели АД, тем

выше риск смерти. [7]. В 27-летнем когортном проспективном исследовании неорганизованной популяции горада Томска (1546 человек в возрасте 20–59 лет) изучалось влияние АГ на общую смертность. Было установлено, что наличие АГ значимо повышало общий риск смертности (OP = 2,2), при этом эффект был выражен как у мужчин (OP = 1,89), так и у женщин (OP = 2,54) [16].

В РО в исследовании МЕРИДИАН-РО при изучении взаимосвязи между различными ФР и исходами, было установлено, что АГ оказывала наиболее значимое влияние среди других ФР, увеличивая риск ККТ (смерть от любых причин, нефатальный ишемический инсульт и нефатальный ИМ) в 4.77 раза [32]. Однако, исследований, направленных на сравнительное изучение ССС при АГ и у лиц с эпизодическим повышением АД в популяции населения РФ и РО не проводилось.

Таким образом анализ проведенных исследований подтверждает значительную роль АГ как ведущего ФР смертности и ССЗ и актуализирует дальнейшее исследование АГ, особенно в РО у лиц имеющих повышение АД без установленного диагноза ГБ, что имеет ключевое значение для разработки эффективных стратегий ранней профилактики и лечения.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1. Объект исследования

Наша работа основана на материалах многоцентрового наблюдательного исследования ЭССЕ – РФ 2 «Эпидемиология сердечно-сосудистых заболеваний в различных регионах РФ 2», выполняемого в рамках Государственного задания Минздрава России руководством Национального ПОД медицинского исследовательского центра терапии и профилактической медицины «НМИЦ ТПМ», с целью мониторирования сердечно-сосудистого здоровья населения. собой Исследование ЭССЕ-РФ2 представляет работу ПО оценке распространенности и анализу эпидемиологической ситуации по ССЗ и ФР в регионах страны, с последующей перспективой разработки модели оценки эффективности профилактических программ.

Формирование репрезентативной выборки населения

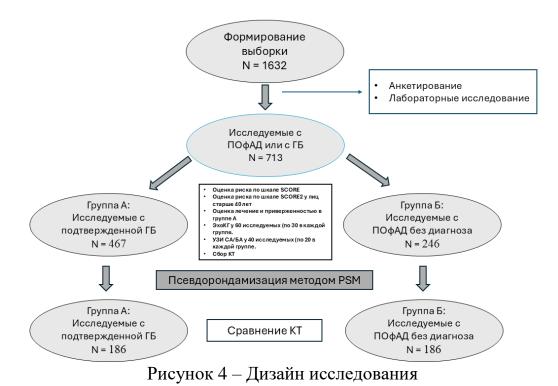
Формирование выборки проводилось в соответствии с методом L. Kish [158]. Процесс отбора осуществлялся в два этапа с использованием систематической стратифицированной многоступенчатой случайной выборки. На первом этапе с помощью функции СЛУЧМЕЖДУ (X; Y) в программе Excel были выбраны 4 медицинских учреждения, из которых 3 находились в городской местности и 1 – в сельской.

На втором этапе из выбранных учреждений были отобраны 6 врачебных участков с численностью обслуживаемого населения не менее 1200 человек. На каждом участке для обследования случайным образом определялось 75–80 адресов домохозяйств (квартир). В каждой из выбранных квартир (домов) для участия в исследовании приглашался один проживающий в возрасте 25–64 лет.

Из сформированной выборки исключались лица, которые: обслуживались в данной поликлинике менее 10 лет; являлись мигрантами; были зарегистрированы, но фактически не проживали на территории участка (например, студенты, вахтовые рабочие и др.). Для отбора использовались паспортные данные участка

поликлиники.

В результате на базе каждой поликлиники для обследования были сформированы группы численностью 400–460 человек с приблизительно равным распределением по полу и возрастным категориям. Данная методология отбора обеспечила репрезентативность выборки для изучения населения региона [41].


Дизайн исследования

Из всех обследованных в ЭССЕ-РФ2 (РО) в возрасте от 25 до 64 лет (1632 человек) в исследование включено 713 обследованных с АД выше или равно 140/90 мм рт.ст. при двухкратном измерении, или с установленным диагнозом ГБ принимающих антигипертензивные препараты, которые были разделены на 2 группы: группа А — больные с установленным диагнозом ГБ, принимающие как минимум один антигипертензивный препарат (467 человек, 62,7% женщин, медиана возраста 52,0 года [Q1-Q3: 44,0 — 58,0 год]), и группа Б - исследуемые с одномоментным ПОфАД при двухкратном измерении (с интервалом между измерениями не менее 3 минут), но без установленного диагноза ГБ и не принимающие антигипертензивные препараты (246 человек, 41,1% женщин, медиана возраста 44,0 года [Q1-Q3: 36,0 — 53,0 года] (Рисунок 4).

Критериями включения были: возраст от 25 до 64 лет и подтверждённый диагноз ГБ при условии приёма по меньшей мере одного антигипертензивного препарата или АД выше или равно 140/90 мм рт.ст. при двухкратном измерении, подписание добровольного информированного согласия на участие в исследовании. Критериями исключения были: Наличие у исследуемых ИБС, ИМ, инсультов или преходящих нарушений мозгового кровообращения, а также СД, согласно данным, указанным в медицинских картах или заполненных пациентами анкетах, а также прием липидснижающей терапии.

Все участники исследования прошли анкетирование, общеклинические и лабораторные исследования. ЭхоКГ было выполнено у 60 человек (по 30 участников в каждой группе), а УЗИ СА и БА - у 40 человек. Сбор КТ проводился в 2019, 2021, 2023 и 2024 гг. Для минимизации различий между группами была проведена псевдорандомизация методом propensity score matching (PSM) с учетом

пола и возраста, что позволило сформировать две группы с одинаковыми характеристиками.

2.2. Методы исследования

Анкетирование по стандартной форме

На первом этапе исследования все пациенты, включённые в исследование, заполняли информационно-регистрационную карту, состоящую из 14 модулей. В рамках заполнения карты участники предоставляли информацию о поле, возрасте, дате рождения, семейном положении, уровне образования, наличии работы, инвалидности, курении, частоте употребления алкоголя и экономических условиях. Также фиксировались данные о наличии заболеваний и применяемой терапии.

Для оценки степени воспринимаемого стресса использовалась Шкала воспринимаемого стресса (Perceived Stress Scale, PSS), включающая 10 вопросов, направленных на измерение интенсивности стресса, пережитого участниками в течение последнего месяца [13].

Для оценки уровня тревоги и депрессии использовалась Госпитальная шкала тревоги и депрессии (Hospital Anxiety and Depression Scale, HADS) [4, 229]. Уровень

тревоги и депрессии определялся по сумме баллов, полученных в ответах на вопросы: норма (от 0 до 7 баллов), субклинически выраженная тревога/депрессия (от 8 до 10 баллов); клинически выраженная тревога/депрессия (≥11 баллов).

Общеклиническое исследование

Всем участникам исследования проводилось двукратное измерение АД (с интервалом между измерениями не менее 3 минут) в соответствии со стандартной инструкцией. Измерение выполнялось с помощью автоматического цифрового прибора нового поколения UA-668, предназначенного для измерения САД, ДАД и ЧСС и основанного на осциллометрическом методе. Измерение выполнялось преимущественно на правой руке. В случае невозможности проведения измерения правой руке процедура осуществлялась на левой руке. Результаты фиксировались с точностью до десятых без округления. ЧСС определялась также двукратно аускультативным методом (с интервалом между измерениями не менее 3 минут), а пульс измерялся пальпаторно на лучевой артерий в течение 60 секунд. Измерение роста и МТ проводилось на откалиброванном оборудовании с использованием стандартной методики. Во время измерений пациенты находились в лёгкой одежде и без обуви. Окружность талии измерялась в положении стоя, на середине расстояния между нижним краем грудной клетки и гребнем подвздошной кости по средней подмышечной линии, в самом узком месте туловища на выдохе, согласно стандартной методике, использованием откалиброванных \mathbf{c} сантиметровых лент.

Измерение окружности бедер проводилось на уровне больших вертелов бедренной кости, по наиболее выступающей части таза.

Лабораторные исследования

Забор биоматериала (кровь натощак после минимум 8-часового голодания и моча) осуществлялся непрерывно, при этом вакутейнеры с биоматериалом доставлялись в лабораторию медицинского учреждения каждые 15–20 минут. В лаборатории кровь подвергалась центрифугированию, а плазма помещалась в специальные транспортные пробирки и замораживалась при температуре не выше -20°С. Замороженные образцы транспортировались специализированными

компаниями в термоконтейнерах в центральные лаборатории: кровь – в г. Москва, моча – в г. Краснодар, с периодичностью 1 раз в 2–4 недели. При анализе липидного обмена дислипидемия определялась при уровнях ОХС >4,9 ммоль/л, ЛНП >3,0 ммоль/л, ЛВП у мужчин <1,0 ммоль/л и у женщин <1,2 ммоль/л, $T\Gamma >1,7$ ммоль/л. Нарушение углеводного обмена фиксировалось при уровне глюкозы плазмы натощак 5,6-6,9 ммоль/л, а возможный СД – при глюкозе плазмы >6,9 ммоль/л или уровне НЬА1с ≥6,5%. Для оценки инсулинорезистентности был рассчитан индекс HOMA-IR, при значении> 2,7 оно считалось повышенным. Повышенным считался уровень общего билирубина >21 мколь/л, креатинина у мужчин > 115 мколь/л и у женщин >97 мколь/л , гамма-глутамилтрансфераза (ГГТ) >50 Е/л, щелочная >258 E/π аспартатаминотрансфераза фосфатаза (ЩФ) аланинаминотрансфераза (АЛТ) >40 ммоль/л и фибриногена >4 г/л, мозговой натрийуретический пропептид (BNP) > 35 пг/мл, Д-димер >245 нг/мл, что позволило провести комплексную оценку метаболического состояния участников.

Оценка сердечно-сосудистого риска с использованием шкал SCORE и SCORE2

Комплексная оценка риска сердечно-сосудистых фатальных исходов в течение следующих десяти лет проводилась с использованием адаптированной шкалы SCORE (Systematic COronary Risk Evaluation), разработанной для РФ. Для всех обследуемых был рассчитан риск смерти от ССЗ в течение ближайших 10 лет. Значение риска >5% классифицировалось как высокий или очень высокий. У участников исследования в возрасте старше 40 лет дополнительно рассчитывался риск фатальных и нефатальных ССС с использованием шкалы SCORE2, предназначенной для стран с очень высоким уровнем ССР. Согласно данной шкале, риск ≥7,5% для лиц моложе 50 лет и ≥10% для лиц старше 50 лет также считался высоким или очень высоким.

Оценка терапии и приверженность к лечению

У всех пациентов, получавших антигипертензивную терапию, была проведена оценка качества лечения. Контроль АД считался достигнутым при значениях АД <140/90 мм рт. ст. Приверженность к терапии оценивалась с

использованием Шкалы комплаентности Мориски-Грина, состоящей из четырёх вопросов, связанных с отношением пациента к приёму лекарственных препаратов. Пациенты, набравшие 4 балла, классифицировались как приверженные. Те, кто набрал 2 балла или менее, считались неприверженными. Участники с результатом в 3 балла рассматривались как недостаточно приверженные и находящиеся в группе риска по развитию неприверженности. Выбор шкалы комплаентности Мориски-Грина был обусловлен её простотой применения в качестве скринингового метода [173].

Инструментальные методы обследования

У 60 исследуемых, по 30 человек в каждой группе, ЭхоКГ было проведено при первом контакте. ЭхоКГ проводили в парастернальной позиции в М-режиме. Исследование выполнялось в покое согласно стандартной методике. Показатели считались повышенными при следующих значениях: диаметр аорты (АО) в конце диастолы (от начала зубца QRS на ЭКГ) > 3,7 см; левое предсердие (ЛП) в конце систолы (максимальный размер от переднего края задней стенки аорты до наиболее выделяющейся линии, представляющей заднюю стенку ЛП) > 3,6 см; конечный диастолический размер (КДР) (на пике заднего движения межжелудочковой перегородки) > 5,5 см; конечный систолический размер (КСР) (в конце диастолы, от начала зубца QRS на ЭКГ) > 3,7 см; толщина межжелудочковой перегородки (ТМЖП) в конце диастолы (от начала зубца QRS на ЭКГ) > 1,1 см; толщина задней стенки левого желудочка (ТЗСЛЖ) в конце диастолы (от начала зубца QRS на ЭКГ) > 1,1 см; переднезадний размер (ПЗР) правого желудочка в конце диастолы (от начала зубца QRS на ЭКГ) > 2,6 см.

У 40 исследуемых, по 20 человек в каждой группе, было проведено УЗИ СА и БА. Исследование выполнялось в состоянии покоя по стандартной методике. ТИМ> 0,9 мм считался повышенным. Также определялись количество и локализация АСБ при их наличии. Под АСБ подразумевали фокальное утолщение стенки сосуда более чем на 50% по сравнению с окружающими участками стенки сосуда либо фокальное утолщение комплекса интима-медиа >1,5 мм, выступающее в просвет сосуда. Наличие АСБ оценивали на 6 участках каротидного бассейна (на

протяжении обеих общих CA, обеих бифуркаций и обеих внутренных CA), а также на протяжении 3 см дистального отдела общих БА, бифуркации общих БА и 1,5 см проксимального отдела поверхностной БА. Суммарное количество всех бляшек определяли как общее число бляшек.

Процент стеноза рассчитывали в поперечном сечении сосуда в области максимального сужения просвета АСБ, исходя из уменьшения его диаметра. Для анализа учитывались максимальное значение процента стеноза и суммарный стеноз.

Сбор конечных точек

Сбор КТ проводился в 2019, 2021, 2023 и 2024 гг. Мероприятия по установлению жизненного статуса участников когорты и частоты новых случаев сердечнососудистых осложнений в популяции региона проводились с использованием прямого контакта с участниками через телефонные или почтовые опросы, а также непрямого контакта посредством запросов в городское адресное бюро, паспортные столы (ОВД, ДЭЗ, РЭУ, ЕИРЦ), отделы ЗАГС, городское статистическое управление, регистр застрахованных ТФОМС, а также через опросы членов семьи и родственников. Собранная информация фиксировалась в информационной карте №1. Данные о случаях смерти, включая ССЗ, получали через запросы в медицинские учреждения, выдавшие врачебные свидетельства о смерти, а также из выписок из истории болезни, амбулаторных карт и опросов лечащих врачей, в соответствии с методическими рекомендациями, и вносились в информационную карту №2. Новые несмертельные случаи сердечно-сосудистых осложнений, такие как нефатальный ИМ, мозговой инсульт, госпитализации по поводу ХСН или нестабильной стенокардии, регистрировались на основе анализа медицинской документации и заносились в информационную карту №3. Все собранные данные, после проверки и устранения замечаний, были внесены для формирования региональной базы данных с использованием программ Access и Excel. Структура конечных точек (согласно протоколу исследования ЭССЕ-РФ2) включала: смерть от ССС (Смерть от инфаркта миокарда/ Смерть от инсульта /Смерть от сердечной недостаточности / Внезапная сердечная смерть /Смерть, связанная с заболеваниями

периферических артерий), нефатальные ИМ, инсульты, ИБС и ХСН.

2.3. Этические аспекты исследования

Все документы, включая протокол клинического исследования, информированное согласие обследуемого, ИРК и ее электронный вариант, разработаны с учетом требований Федерального закона РФ от 27 июля 2006 г. № 152-ФЗ «О персональных данных», Приказа № 200-н от 01 апреля 2016 г. «Об утверждении правил надлежащей клинической практике», а также Хельсинкской декларации [35, 34, 227].

Все участники исследования ознакомлены с целями и основными положениями исследования и подписали письменно оформленное согласие на участие в исследовании. Этический комитет РязГМУ одобрил протокол исследования 12.09.2022 г. (протокол №1).

2.4. Методы статистической обработки

Статистический анализ данных выполнялся с использованием программного обеспечения StatTech v. 4.0.6 (разработано ООО "Статтех", Россия), SPSS 26 и Microsoft Excel. Проверка количественных показателей на соответствие нормальному распределению осуществлялась с применением теста Колмогорова-Смирнова. Данные с нормальным распределением представлялись в виде средних арифметических значений (М) с указанием стандартного отклонения (SD) и 95% доверительного интервала (95% ДИ). В случаях, когда распределение данных не соответствовало нормальному, использовались медиана (Ме) и интерквартильный размах (Q1–Q3).

Для сравнения количественных данных между двумя группами, не соответствующих нормальному распределению, применялся критерий Манна-Уитни. Если требовалось проанализировать три или более группы, использовался критерий Краскела-Уоллиса с последующей поправкой Холма для метода Данна. Корреляционные связи между количественными показателями оценивались через коэффициент ранговой корреляции Спирмена, позволяющий определить силу и направление зависимости.

Прогностические модели для оценки зависимости количественных переменных от факторов строились на основе метода линейной регрессии. Выживаемость на протяжении семи лет анализировалась методом Каплана-Мейера. Оценка исходов осуществлялась с помощью регрессионного анализа пропорциональных рисков Кокса. Все факторы, для которых в группах были выявлены статистически значимые различия, включались в однофакторный регрессионный анализ. Если в многофакторном анализе фактор сохранял значимость, для него рассчитывались относительный риск и 95% ДИ.

Для устранения влияния различий в группах была выполнена псевдорандомизация методом propensity score matching (PSM), с учетом пола и возраста. В результате удалось сформировать две группы с одинаковыми характеристиками.

Статистическая значимость различий оценивалась при уровне р <0,05.

ГЛАВА З. ИЗУЧЕНИЕ ФАКТОРОВ РИСКА У ПАЦИЕНТОВ С ГБ И У ИССЛЕДУЕМЫХ С ОДНОКРАТНЫМ ПОФАД, НО БЕЗ ДИАГНОЗА ГБ

Из всех обследованных в ЭССЕ-РФ2 (РО), в возрасте от 25 до 64 лет (1632 человек), в исследование включено 713 обследованных с АД выше или равно 140/90 MM двухкратном измерении, принимающих рт.ст. при или антигипертензивные препараты, не имеющих ИБС, ИМ, инсультов или преходящих нарушений мозгового кровообращения в анамнезе, а также не принимающих липидснижающей терапии. Исследуемые были разделены на 2 группы: группа А – больные с установленным диагнозом ГБ, принимающие как минимум один антигипертензивный препарат (467 человек, 62,7% женщин, медиана возраста 52,0 лет [Q1-Q3: 44,0 - 58,0 лет]), и группа Б - исследуемые с ΓБ ПОфАД, без установленного диагноза И не принимающие антигипертензивные препараты (246 человек, 41,1% женщин, медиана возраста 44,0 лет [Q1-Q3: 36,0 - 53,0 лет]) (Таблица 1).

Таблица 1 – Социально-демографические характеристики участников в группах A и Б

Помережени		Гру					
Показатели	Категории	Группа А	Группа Б	р			
Под р (0/)	мужчины	174 (37,3%)	145 (58,9%)	< 0,001*			
Пол, п (%)	женщины	293 (62,7%)	101 (41,1%)	< 0,001			
Семейное	Живет один	186 (39,8%)	89 (36,2%)	0,341			
положение, п (%)	живет в семье	281 (60,2%)	157 (63,8%)	0,341			
Opposition in	Начальное	29 (6,2%)	12 (4,9%)				
Образование, n (%)	Среднее	272 (58,2%)	132 (53,7%)	0,273			
(%)	Высшее	166 (35,5%)	102 (41,5%)				
Работа/занятость,	Не работает	135 (28,9%)	36 (14,6%)	< 0.001*			
n (%)	работает	332 (71,1%)	210 (85,4%)	< 0,001*			
Примечание $-*-$ различия показателей статистически значимы (р <0,05).							

38,6% [35,0% – 42,3%] (n=275) обследуемых жили одни в момент исследование, тогда как 61,4% [57,7% – 65,0%] (n=438) жили в семье. 5,8% [4,2% – 7,7%] (n=41) имели начальное или незаконченное среднее образование, 56,7%

[52,9% - 60,3%] (n=404) имели среднее образование, тогда как 37,5% [34,0% - 41,3%] (n=268) имели высшее образование. Работающими были 76,0% [72,7% - 79,1%] (n=542). Группа A и Б статистически значимо различались по взрасту, полу и по количеству работающих (Таблица 1).

Изучение липидного обмена

При анализе липидного обмена была выявлена очень высокая распространенность дислипидемии в общей группе обследованных: почти 9 из 10 участников имели хотя бы один вид дислипидемии. Гиперхолестеринемия наблюдалась у двух третей испытуемых, а 4 из 5 имели повышенный уровень ЛНП. Следует также отметить, что более чем у трети участников была диагностирована гипертриглицеридемия. В отличие от других показателей липидного обмена, снижение уровня ЛВП встречалось значительно реже (Рисунок 5).

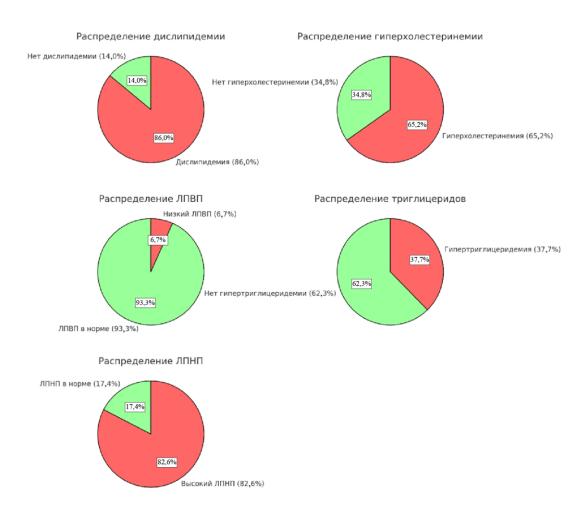


Рисунок 5 – Распределение частоты нарушений липидного обмена в общей группе

При оценке всех медиан липидного обмена в общей группе оказалось, что медианное значение ОХС составила 5,4 ммоль/л [Q1-Q3: 4,7 – 6,1 ммоль/л]. Медиана уровня ЛНП составила 4,0 ммоль/л [Q1-Q3: 3,3 – 4,7ммоль/л]. Уровень ЛВП имел медианное значение 1,4 ммоль/л [Q1-Q3: 1,2 – 1,7ммоль/л] с довольно широким диапазоном значений. Медиана ТГ составила 1,4 ммоль/л [Q1-Q3: 1,0 – 2,1ммоль/л], при этом у отдельных участников наблюдались значительно более высокие значения.

При сравнительном анализе липидного обмена отмечена очень высокая встречаемость дислипидемии как у больных группы А, так и у обследуемых группы Б без статистически значимых отличий в показателях частоты дислипидемии между группами. Так, 86,1% из обследованных в группе А и 85,8% в группе Б имели хотя бы один вид дислипидемии (p=0,910). При этом у 64,5% обследованных в группе А и 66,7% в группе Б была обнаружена гиперхолестеринемия (p=0,555), у 82,2% и 83,3% - соответственно было обнаружено увеличение уровня ЛНП (p=0,711) и у 37,7% и 37,8% обследованных соответственно была выявлена гипертриглицеридемия (p=0,515). В тоже время, только у 6,4% и 7,3% обследованных соответственно наблюдалось снижение уровня ЛВП (p=0,651).

Таблица 2 – Сравнение показателей липидного спектра в группах А и Б

Показатель	Группа	Me	$Q_1 - Q_3$	p				
ONG	Группа А	5,3	4,7 – 6,1	0.220				
ОХС (ммоль/л)	Группа Б	5,5	4,7 – 6,4	0,220				
ЛВП (ммоль/л)	Группа А	1,4	1,2 – 1,7	0,987				
	Группа Б	1,4	1,2 – 1,7	0,767				
ТГ (ммоль/л)	Группа А	1,4	1,0 – 2,1	0,677				
	Группа Б	1,5	1,0 – 2,0	0,077				
ЛНП (ммоль/л)	Группа А	3,9	3,2 – 4,6	0,150				
	Группа Б	4,0	3,3 – 4,8	0,130				
	Группа Б	5,2	5,0 – 5,4					
Примечание $-*-$ различия показателей статистически значимы (р <0,05).								

При сравнительной оценке всех средних показателей липидного обмена оказалось, что медианы уровня ОХС, ЛНП, ТГ и ЛВП у больных с ранее установленным диагнозом в группе А по сравнению с обследованными в группе Б статистически значимо не различались (Таблица 2).

Изучение углеводного обмена

При анализе уровней глюкозы натощак в общей группе выявлена высокая распространённость нарушений углеводного обмена: у трети участников было зафиксировано нарушение гликемии натощак, а у 6,5% уровень глюкозы составил ≥ 7,0 ммоль/л (Рисунок 6). Медиана уровня глюкозы натощак составила 5,3 ммоль/л [Q₁ − Q₃: 4,9 − 5,8 ммоль/л], а медиана HbA1с также равнялась 5,3% [Q₁ − Q₃: 4,9 − 5,8%]. Анализ результатов индекса инсулинорезистентности HOMA-IR в общей группе показал, что медиана составила 2,4 [Q₁ − Q₃: 1,6 − 4,0]. При этом 44,7% людей имели значение HOMA-IR> 2,7, что указывает на наличие инсулинорезистентности или риск её развития.

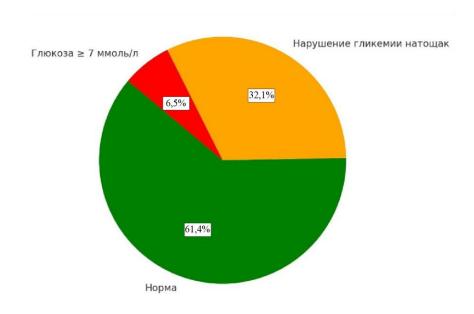


Рисунок 6 – Анализ нарушений углеводного обмена в общей группе

При сравнительном анализе углеводного обмена в группах A и Б были установлены статистически значимые различия как в уровне глюкозы натощак (p= 0,009), так и в уровне HbA1c (p <0,001) (Таблица 3).

Кроме того, частота нарушений углеводного обмена в группе А встречалась у 40,7% пациентов(у 30,4% пациентов - нарушение гликемии натощак, у 10,3% уровень глюкозы \geq 7 ммоль/л), что статистически значимо чаще, чем в группе Б, где 36,5% пациентов имели нарушение углеводного обмена (у 31,3% - нарушение гликемии натощак и у 3,3% уровень глюкозы \geq 7 ммоль/л) (р =0,004). В группе А медиана НОМА-IR составила 2,5 [Q₁ – Q₃: 1,7 – 4,3], в группе В — 2,3 [Q₁ – Q₃: 1,4 – 3,8] (р = 0,011). Однако частота НОМА-IR> 2,7 между группами не различалась (46,9% в группе А против 40,7% в группе В, р = 0,111).

Таблица 3 – Сравнение показателей углеводного обмена в группах А и Б

Показатели	Гру	n							
Показатели	Группа А	Группа Б	Р						
Глюкоза, Me [IQR]	5,4 [4,9; 5,9]	5,3 [4,9; 5,6]	0,009*						
HbA1c, Me [IQR]	5,4 [5,1; 5,6]	5,2 [5,0; 5,4]	< 0,001*						
Примечание – * – различия показателей статистически значимы (р									
<0,05).									

Избыточная масса тела и ожирение

При анализе ИМТ в общей группе отмечена высокая распространённость избыточной МТ и ожирения — 85,1% исследуемых имели одно из этих состояний (Рисунок 7), при этом медиана ИМТ составила 29,7 кг/м² [Q₁ – Q₃: 26,5 – 33,0 кг/м²]. При анализе связи ИМТ с возрастом выявлена слабая положительная корреляция, описываемая уравнением парной линейной регрессии: Yимт = $0,061 \times \text{Хвозраст} + 27,279$. Это означает, что с увеличением возраста на 1 год ожидается прирост ИМТ на 0,061 кг/м². Женщины имели статистически значимо более высокий ИМТ по сравнению с мужчинами: 30,1 кг/м² [Q₁ – Q₃: 26,6 – 34,0 кг/м²] против 29,3 кг/м² [Q₁ – Q₃: 26,4 – 32,4 кг/м²], соответственно (p=0,036). Также женщины чаще страдали ожирением (p=0,002) (Рисунок 7).

Анализ индекса ОТ/ОБ показал, что медиана в общей группе составила 0.9 [Q₁ – Q₃: 0.8 – 1.0], при этом 37.3% участников имели высокий индекс (значения выше 0.85 у женщин и выше 1.0 у мужчин). Анализ по полу выявил, что у мужчин высокий индекс наблюдался у 15.0%, тогда как у женщин — у 55.3% (р <0.001).

При анализе показателей ИМТ установлено, что в группе А только 13,9% больных (n=65) имели нормальный ИМТ, у 34,7% (n=162) наблюдалась избыточная МТ, а у 51,4% (n=240) — ожирение, в то время как в группе Б только 16,6% (n=41) лиц имели нормальный ИМТ, 41,5% (n=102) — избыток МТ, и 41,9% (n=103) — ожирение, но без статистической значимой разницы между группами (p=0,054) (Рисунок 7). В то время как медиана ИМТ в группе А составила 30,1 кг/м² [Q1-Q3: 26,8-33,4], что статистически значимо превышает медиану в группе Б - 29,3 кг/м² [Q1-Q3: 25,9-32,4] (p=0,013).

В группе А медиана составила $0.9 [Q_1 - Q_3: 0.8 - 1.0]$, аналогичное значение наблюдалось в группе В — $0.9 [Q_1 - Q_3: 0.8 - 1.0]$ (р = 0.732). Однако частота высокого индекса ОТ/ОБ в группе А была выше (42.4%) по сравнению с группой В (27.6%) (р <0.001).

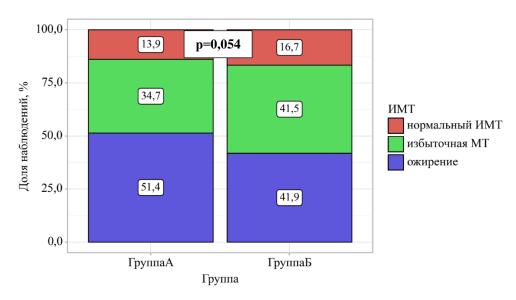


Рисунок 7 – Распределение участников групп А и Б по категориям ИМТ

Курение

Частота курящих в общей группе составила 26,5%, при этом курили 41,4% мужчин и 14,5% женщин. Следует отметить, что медианный возраст курящих был статистически значимо ниже по сравнению с некурящими: 44,0 года [Q1–Q3: 37,0–53,0 года] у курящих и 52,0 года [Q1–Q3: 43,0–58,0 года] у некурящих (р <0,001). В группе А количество курящих составило 20,8% (n=97), что статистически значимо

ниже, чем в группе Б, где курило 37,4% (n=92) (р <0,001) (Рисунок 8). Среди мужчин, 37,9% в группе А и 45,5% в группе Б являлись курильщиками, а среди женщин – 10,6% и 25,7% соответственно (p= 0,008, <0.001).

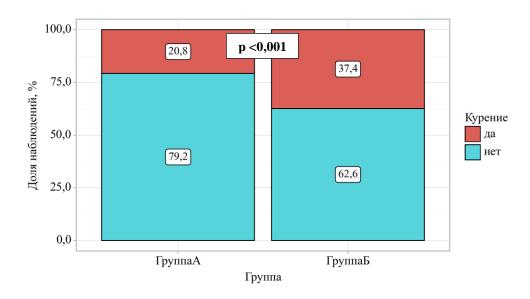


Рисунок 8 – Анализ курения в зависимости от группы

ЧСС

Медиана ЧСС в общей группе составила 73,0 уд/мин [Q1–Q3: 67,0–80,0 уд/мин]. При этом 29,3% участников исследования имели ЧСС ≥80 уд/мин. Следует отметить, что не было выявлено статистически значимых различий в медиане ЧСС и частоте ЧСС ≥80 уд/мин между мужчинами и женщинами: у мужчин медиана составила 74,0 уд/мин [Q1–Q3: 67,0–82,0 уд/мин], частота ЧСС ≥80 уд/мин − 32,3%, у женщин − 73,0 уд/мин [Q1–Q3: 68,0–80,0 уд/мин], частота ЧСС ≥80 уд/мин − 26,9% (р=0,426, р=0,116 соответственно). При анализе зависимости ЧСС от возраста была установлена слабая обратная связь. Зависимость описывается уравнением парной линейной регрессии: YЧСС = -0,163 × Хвозраст + 82,819. Это означает, что с увеличением возраста на 1 год можно ожидать снижение ЧСС на 0,163 уд/мин.

Частота ЧСС выше 80 уд/мин как ФР АГ, встречалась нечасто и у больных в группе А встречалась реже (25,1%), чем у обследованных в группе Б (37,4%) (р <0,001) (Рисунок 9). Также медианы ЧСС в группах А и Б статистически значимо различались: в группе А - 73,0 уд/мин [Q1-Q3: 67,0-79,5 уд/мин], а в группе Б –

76,0 уд/мин [Q1-Q3: 70,0-82,0 уд/мин] (р <0,001).

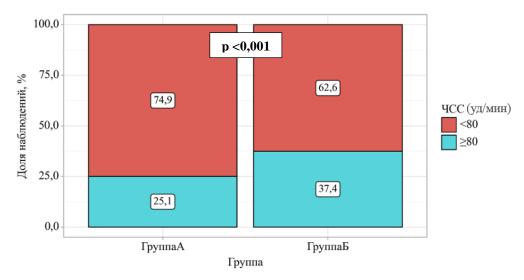


Рисунок 9 – Анализ ЧСС в зависимости от группы

Психоэмоциональные ФР

Медиана уровня стресса в общей группе составила 14,0 балла [Q1–Q3: 9,0–18,0 баллов]. Корреляционный анализ не выявил взаимосвязи между возрастом и уровнем стресса. Однако следует отметить, что женщины имели статистически значимо более высокий уровень стресса – 15,0 баллов [Q1–Q3: 11,0–20,0 балла] по сравнению с мужчинами – 12,0 балла [Q1–Q3: 8,0–17,0 баллов] (р <0,001) (Рисунок 10).

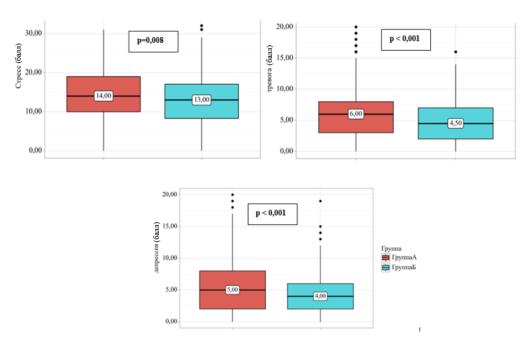


Рисунок 10 — Анализ медианы показателей стресс/ тревога/ депрессия в зависимости от группы

При анализе уровня стресса в зависимости от группы были выявлены статистически значимые различия: в группе А медиана уровня стресса оказалась выше и составила 14,0 балла [Q1–Q3: 10,0–19,0 балла], тогда как в группе Б – 13,0 балла [Q1–Q3: 8,3–17,0 балла] (p = 0,008).

Медиана уровня тревоги в общей группе составила 5,0 баллов [Q1-Q3: 3,0—8,0 баллов]. Корреляционный анализ не выявил значимой взаимосвязи между возрастом и уровнем тревоги (p = 0,092). Однако при анализе различий по полу было установлено, что женщины имели статистически значимо более высокий уровень тревоги — 6,0 баллов [Q1-Q3: 4,0—9,0 баллов], по сравнению с мужчинами — 4,0 баллов [Q1-Q3: 2,0—7,0 баллов] (p < 0,001).

Анализ структуры тревожных состояний показал, что в общей группе 71,1% участников имели нормальный уровень тревоги, 17,4% — субклинический, и 11,5% — клинически выраженный уровень тревоги. У женщин клинический уровень тревоги был зафиксирован у 16,5% испытуемых, тогда как у мужчин — только у 5,3% (р <0,001) (Рисунок 11).

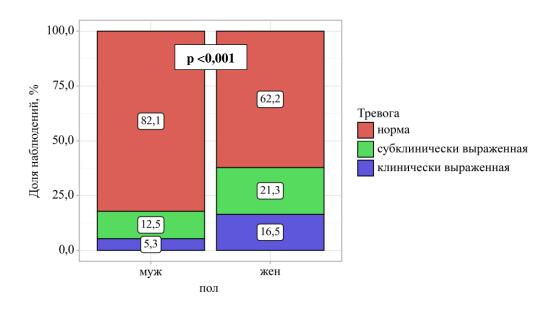


Рисунок 11 – Анализ тревоги в зависимости от пола

При сравнении уровней тревоги по группам A и Б также были выявлены статистически значимые различия: в группе A медиана уровня тревоги составила 6,0 баллов [Q1-Q3: 3,0–8,0 баллов], а в группе Б – 4,5 баллов [Q1-Q3: 2,0–7,0 баллов]

(р <0,001). В группе А клинический уровень тревоги наблюдался у 13,5% участников, тогда как в группе Б – у 7,7% (р = 0,008). (Рисунок 12)

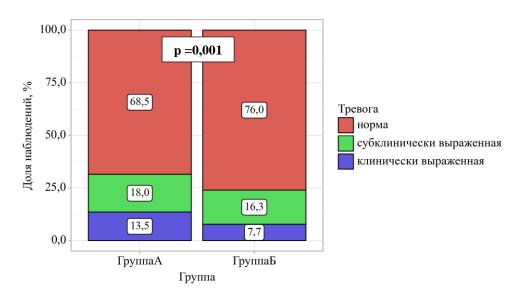


Рисунок 12 – Анализ тревоги в зависимости от группы

Медиана уровня депрессии в общей группе составила 5,0 баллов [Q1–Q3: 2,0–7,0 баллов]. Корреляционный анализ показал наличие слабой положительной взаимосвязи между возрастом и уровнем депрессии (p=0,001). Наблюдаемая зависимость описывается уравнением парной линейной регрессии: Удепрессия = $0,043 \times \text{Хвозраст} + 2,921$. При увеличении возраста на 1 год следует ожидать увеличение депрессии на 0,043 балла. Женщины имели статистически значимо более высокий уровень депрессии – 5,0 баллов [Q1–Q3: 3,0–7,8 балла], чем мужчины – 4,0 баллов [Q1–Q3: 2,0–7,0 баллов] (p<0,001).

Анализ структуры депрессивных состояний показал, что в общей группе 77,1% участников имели нормальный уровень депрессии, у 15,2% был выявлен субклинический уровень, и 7,7% участников имели клинически выраженную депрессию. Среди женщин клиническая депрессия была зафиксирована у 8,9% участников, в то время как среди мужчин – у 6,3% (Рисунок 13).

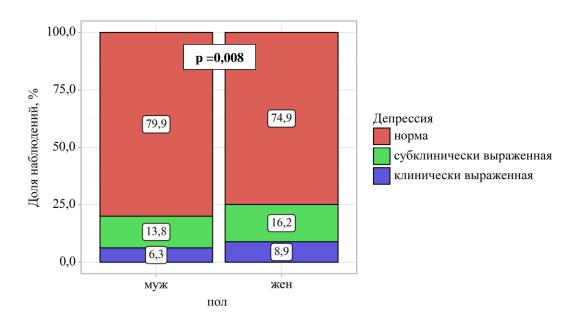


Рисунок 13 – Анализ депрессии в зависимости от пола

При сравнении уровня депрессии по группам A и Б также были выявлены статистически значимые различия: в группе A медиана уровня депрессии составила 5,0 баллов [Q1–Q3: 2,0–8,0 баллов], а в группе Б – 4,0 балла [Q1–Q3: 2,0–6,0 баллов] (р <0,001). В группе A клинический уровень депрессии наблюдался у 9,4% участников, тогда как в группе Б – у 4,5% (р = 0,015) (Рисунок 14).

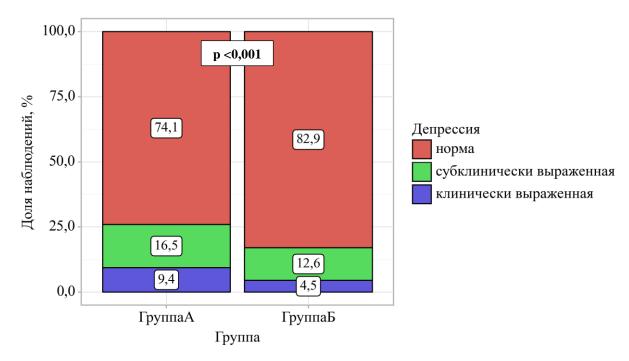


Рисунок 14 – Анализ депрессии в зависимости от группы

Следует отметить, что у одиноких людей установлены более высокие уровни стресса 16.0 баллов [Q1–Q3: 12.0 – 20.0 баллов], тревоги 6.0 баллов [Q1–Q3: 4.0 – 9.0 баллов] и депрессии 6 баллов [Q1–Q3: 3.0 – 9.0 баллов] по сравнению с теми, кто проживает в семье (p=0,004, p=0,026 и р <0,001 соответственно). При отсутствии среднего или высшего образования уровни стресса тревоги и депрессии статистически значимо выше, чем при наличии такового. Уровень стресса не различался у лиц в зависимости от занятости, в отличие от уровня тревоги – 5.0 баллов [Q1–Q3: 3.0 – 8.0 баллов] у работающих и 6.0 баллов [Q1–Q3: 4.0 – 9.8 баллов] у неработающих (р <0,001) и депрессии 5.0 баллов [Q1–Q3: 2.0 – 7.0 баллов] и 6.0 баллов [Q1–Q3: 3.0 – 9.0 баллов] (р<0,001) у работающих и неработающих соответственно.

При оценке тревоги в зависимости от стресса была установлена слабая прямая связь: при увеличении стресса на 1 балл следует ожидать увеличение тревоги на 0,331 балл. Эта зависимость описывается уравнением парной линейной регрессии: у тревога=0,331×х стресс+1,262. Полученная модель объясняет 30,9% наблюдаемой дисперсии показателя "тревога" (Рисунок 15).

При оценке связи депрессии в зависимости от стресса была установлена умеренная прямая связь: при увеличении стресса на 1 балл следует ожидать увеличение депрессии на 0,246 балл. Наблюдаемая зависимость описывается уравнением парной линейной регрессии: Удепрессия=0,246× Хстресс+1,737. Полученная модель объясняет 22,1% наблюдаемой дисперсии показателя депрессия (Рисунок 15).

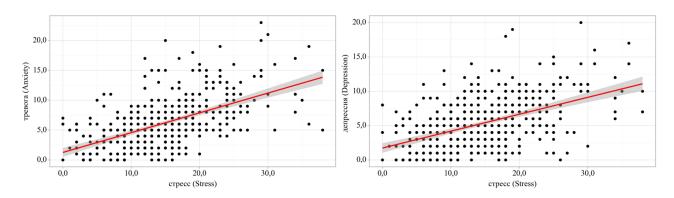


Рисунок 15 – Парная линейная регрессия связи депрессии, тревоги и стресса

ГЛАВА 4. ОЦЕНКА РЕЗУЛЬТАТОВ УЗИ СОННЫХ, БЕДРЕННЫХ АРТЕРИЙ И УЗИ СЕРДЦА

Результаты ЭхоКГ показывают, что среди 60 исследованных пациентов (средний возраст: $48,3 \pm 10,1$ лет, 50% женщин) большинство параметров находились в пределах нормы. Однако стоит отметить, что размер ЛП оказался немного увеличен. Медианное значение размера ЛП составило 3,7 см [Q1 – Q3: 3,4 – 4,0 см]. (Таблица 4).

Таблица 4 — Оценка возрастных и структурно-функциональных показателей по данным $ЭхоК\Gamma$ у участников

Показатели	$M \pm SD / Me$	95% ДИ / Q1 — Q3
AO, $M \pm SD$ (cm)	$3,3 \pm 0,4$	3,2 – 3,4
ЛП, Ме (см)	3,7	3,4 – 4,0
КДР, Ме (см)	5,0	4,8 – 5,5
КСР, Ме (см)	3,2	3,0 – 3,5
ФВ, Me (%)	65,0	64,0 - 67,0
ТМЖП, Ме (см)	0,9	0,8 – 1,0
ТЗСЛЖ, Ме (см)	0,9	0,8 – 1,0
ПЗР, Ме (см)	2,5	2,2-2,6
градиент, Ме (мм.рт.ст.)	20,5	18,8 – 23,0

При оценке частоты отклонений показателей ЭхоКГ от нормы было установлено, что у 53,3% исследуемых размер ЛП превышал 3,6 см. Пациентов с ФВ ЛЖ ниже 40% не выявлено, однако у 6,7% исследуемых были впервые установлены зоны гипо- или акинезии (Таблица 5) при отсутствии на указание в анамнезе на перенесенный ИМ.

Таблица 5 — Частота выявления эхокардиографических отклонений среди участников

Показатели	Категории	%	95% ДИ		
AO >3,7cm	Нет	85,0	73,4 – 92,9		
AO > 5,76M	Да	15,0	7,1 – 26,6		
ЛП >3,6см	Нет	46,7	33,7 - 60,0		
3111 > 3,00M	Да	53,3	40,0 – 66,3		
КДР >5,5см	Нет	81,7	69,6 – 90,5		
10Д1 > 3,30М	Да	18,3	9,5 – 30,4		
КСР>3,7см	Нет	85,0	73,4 – 92,9		
KC1 > 3,70M	Да	15,0	7,1 – 26,6		
ФВ гр	>49%	95,0	86,1 – 99,0		
ФВТР	40%-49%	5,0	1,0 – 13,9		
ТМЖП>1,1см	Нет	80,0	67,7 – 89,2		
TIVIXII> 1,10W	Да	20,0	10,8 – 32,3		
ТЗСЛЖ>1,1см	Нет	95,0	86,1 – 99,0		
13CJIM 1,1CM	Да	5,0	1,0 – 13,9		
ПЗР >2,6см	Нет	75,0	62,1 – 85,3		
1131 > 2,00M	Да	25,0	14,7 – 37,9		
АК регургитация	0 ст.	96,7	88,5 – 99,6		
тис регургитация	1 ст.	3,3	0,4 – 11,5		
	1 ст.	66,7	53,3 – 78,3		
МК регургитация	2 ст.	31,7	20,3 – 45,0		
	3 ст.	1,7	0,0 – 8,9		
ТК регургитация	1 ст.	76,7	64,0 – 86,6		
тк регургитация	2 ст.	23,3	13,4 – 36,0		
зоны гипо/акинезия	Нет	93,3	83,8 – 98,2		
Solidi i milo/ armicoma	Да	6,7	1,8 – 16,2		

При анализе показателей ЭхоКГ по полу у мужчин были выявлены статистически значимо более высокие значения АО, ТМЖП, ТЗСЛЖ и ПЗР правого желкдочка (р <0,05 для всех параметров) (Рисунок 16)

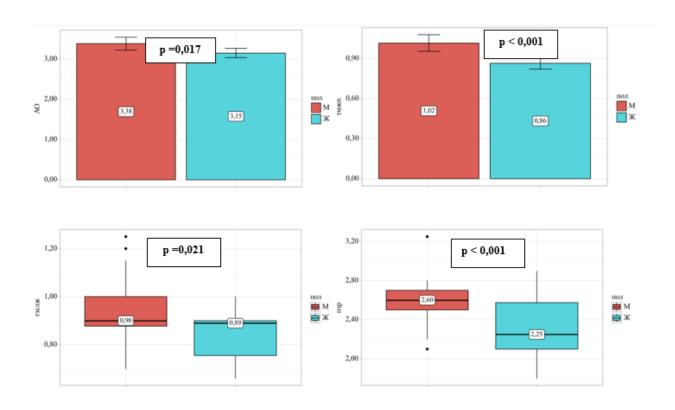


Рисунок 16 - Половые различия в структурно-функциональных показателях по данным ЭхоКГ

Корреляционный анализ выявил статистически значимые зависимости между рядом параметров ЭхоКГ и клиническими показателями. Возраст показал значимую положительную связь с ТМЖП ($r=0.317,\ p=0.014$), указывая на тенденцию увеличения этого показателя с возрастом.

ИМТ обнаружил значимые корреляции с несколькими показателями: умеренные положительные связи с АО ($r=0,377,\ p=0,004$), ЛП ($r=0,363,\ p=0,005$), КСР ($r=0,273,\ p=0,036$) и КДР ($r=0,354,\ p=0,006$). Также выявлена значимая положительная корреляция между ИМТ и ТЗСЛЖ ($r=0,248,\ p=0,059$).

Окружность талии продемонстрировала умеренную положительную связь с AO (r=0.483, p<0.001) и ЛП (r=0.298, p=0.023), а также с КСР (r=0.278, p=0.031) и КДР (r=0.286, p=0.027). ЛВП обнаружили значимую отрицательную

корреляцию с КСР (r = -0.312, p = 0.016) и КДР (r = -0.300, p = 0.021). ТГ продемонстрировали значимую положительную корреляцию с АО (r = 0.368, p = 0.004) и КСР (r = 0.278, p = 0.031), тогда как HbA1c показал положительную корреляцию с КСР (r = 0.329, p = 0.010).

Индекс ОТ/ОБ продемонстрировал умеренную положительную связь с АО (r = 0,355, p = 0,006), ЛП (ρ = 0,364, p = 0,005), КСР (ρ = 0,350, p = 0,006), КДР (ρ = 0,359, p = 0,005), ТМЖП (ρ = 0,443, p < 0,001), и ПЗР (ρ = 0,422, p < 0,001) (Таблица 6)

Таблица 6 — Корреляционные зависимости антропометрических и метаболических показателей с параметрами ЭхоКГ

	AO		ЛП		КСР		КДР		ФВ		ТМЖП		ТЗСЛЖ		ПЗР	
	R	р	R	р	R	р	R	р	R	р	R	р	R	р	R	р
Возрас	0,0 83	0,5 32	0,1 47	0,2 71	0,1 45	0,2 69	0,0 02	0,9 90	- 0,1 70	0,1 94	0,3 17	0,0 14	0,2 45	0,0 59	0,1 52	0,2 52
ИМТ	0,3 77	0,0 04	0,3 63	0,0 05	0,2 73	0,0 36	0,3 54	0,0 06	0,1 43	0,2 80	0,2 27	0,0 84	0,2 48	0,0 59	0,3 37	0,0 10
САД	0,0 18	0,8 90	- 0,0 56	0,6 77	0,0 02	0,9 86	0,0 52	0,6 92	0,0 59	0,6 56	0,0 95	0,4 68	0,0 64	0,6 29	- 0,1 74	0,1 88
ДАД	0,1 49	0,2 59	0,2 31	0,0 81	0,1 35	0,3 04	0,1 96	0,1 34	0,1 41	0,2 83	0,0 23	0,8 62	0,0 64	0,6 28	0,2 72	0,0 37
чсс	- 0,0 16	0,9 07	0,1 52	0,2 55	0,0 28	0,8 30	0,1 46	0,2 65	0,0 53	0,6 87	- 0,0 06	0,9 67	0,0	0,8 16	0,1 25	0,3 47
Окруж ность тали	0,4 83	< 0,0 01	0,2 98	0,0 23	0,2 78	0,0 31	0,2 86	0,0 27	0,2 24	0,0 86	0,3 21	0,0 13	0,2 63	0,0 42	0,4 11	0,0 01
Окруж ность бедр	0,4	0,0 02	0,1 70	0,2 01	0,1 23	0,3 50	0,1 88	0,1 50	0,1 58	0,2 28	0,0 94	0,4 74	0,1 59	0,2 24	0,2	0,0 75
Индек с ОТ/ОБ	0,3 55	0,0 06	0,3 64	0,0 05	0,3 50	0,0 06	0,3 59	0,0 05	- 0,1 80	0,1 70	0,4 43	<0, 00 1	0,2 97	0,0 21	0,4 22	<0, 00 1
OXC	0,0 61	0,6 44	0,1 32	0,3 23	0,1 12	0,3 94	0,0 36	0,7 87	0,0 23	0,8 62	0,2 23	0,0 87	0,2	0,1 19	0,0 01	0,9 96

	Продолжение Таблицы 6															
лнп	0,0 02	0,9 89	0,1 20	0,3 73	0,0 83	0,5 30	0,0 35	0,7 91	0,1 36	0,3 04	0,2 50	0,0 56	0,2 92	0,0 25	- 0,0 20	0,8 82
ЛВП	- 0,2 86	0,0 30	0,2 65	0,0 46	0,3 12	0,0 16	0,3 00	0,0 21	0,1 38	0,2 96	- 0,3 46	0,0 07	0,3 38	0,0 09	- 0,4 55	< 0,0 01
ТΓ	0,3 68	0,0 04	0,1 60	0,2 29	0,2 78	0,0 31	0,2 44	0,0 61	- 0,2 91	0,0 24	0,2 54	0,0 51	0,1 64	0,2 11	0,2 95	0,0 23
Глюко за	0,1 97	0,1 38	0,2 29	0,0 87	0,1 62	0,2 20	0,0 84	0,5 29	- 0,0 54	0,6 85	0,2 45	0,0 61	0,2 75	0,0 35	0,1 69	0,2 04
Hb _{A1c}	0,1 93	0,1 42	0,1 53	0,2 52	0,3	0,0 10	0,1 77	0,1 77	- 0,1 77	0,1 76	0,1 56	0,2 34	0,1 92	0,1 42	0,1 86	0,1 59

Примечание — \mathbf{R} — коэффициент корреляции Спирмена, — \mathbf{p} — уровень статистической значимости. Значения р <0,05 считаются статистически значимыми.

Из 60 пациентов с выполненным ЭхоКГ, 30 человек входили в группу А (50% женщин) и 30 человек — в группу Б (50% женщин). Средний возраст не различался между группами: 48.3 ± 10.2 лет и 48.2 ± 10.3 лет соответственно (p = 0.950).

Анализ средних показателей ЭхоКГ в зависимости от групп показал, что большинство параметров не имели значимых различий, за исключением КСР, который был статистически значимо меньше в группе Б, и ФВ, которая была ниже в группе А (Таблица 7). Однако при оценке частоты отклонений показателей ЭхоКГ от нормы в зависимости от группы значимых различий не было выявлено.

Результаты УЗИ СА показали, что среди 40 обследованных пациентов (медиана возраста: 51,0 год [Q₁ – Q₃: 45,8 – 58,3 лет], 50% женщин) средние показатели ТИМ находились в пределах нормы (Таблица 8) при этом только 7,5% и 10,0% исследуемых имели ТИМ >0,9мм в правой и левой СА соответственно. Однако у 50,0% пациентов выявлена как минимум одна АСБ. Основными локализациями АСБ были бифуркации общих СА (42,9% и 38,1% АСБ в правой и левой общих СА соответственно), в то время как в правой общей СА находилось 9,5% АСБ, и в левой внутренней СА также обнаружено 9,5% АСБ.

Таблица 7 – Описательная статистика количественных переменных УЗИ сердца в зависимости от групп

Показатели	Группа A M ± SD / Me [Q1 – Q3]	Γ руппа Б $M \pm SD / Me [Q_1 - Q_3]$	p
AO, $M \pm SD$ (cm)	3,4 [3,2 – 3,5]	3,1 [2,9 – 3,4]	0,050
ЛП, Ме (см)	3,9 [3,4 – 4,1]	3,6 [3,3 – 3,9]	0,112
КДР, Ме (см)	5,2 [4,8 – 5,5]	5,5 [4,8 – 5,4]	0,202
КСР, Ме (см)	3,3 [3,2 – 3,5]	3,2 [3,0 – 3,4]	0,046*
ФВ, Me (%)	64,5 [63,0 – 66,0]	66,5 [64,0 – 67,8]	0,011*
ТМЖП, Ме (см)	$1,0 \pm 0,1$	0.9 ± 0.2	0,569
ТЗСЛЖ, Ме (см)	0,9 [0,8 – 1,0]	0,9 [0,8 – 1,0]	0,656
ПЗР, Ме (см)	2,5 [2,3 – 2,7]	2,5 [2,2 – 2,6]	1,80
градиент, Ме (мм.рт.ст.)	20,5 [19,3 – 22,0]	21,0 [18,0 – 23,0]	0,831
Примечание	 – * – различия показателей 	статистически значимы (р	<0,05).

Таблица 8 – Показатели ТИМ и степени стеноза по данным УЗИ СА

Показатели	$M \pm SD / Me$	95% ДИ / Q1 — Q3
Средняя ТИМ правая CA, M ± SD	0.7 ± 0.1	0,6 – 0,7
Средняя ТИМ левая СА, Ме	0,6	0,6-0,8
Максимальный стеноз в каротидном бассейне, $M \pm SD$	$20,7 \pm 6,2$	17,5 – 23,8
возраст, Ме	51,0	45,8 – 58,3

При анализе показателей УЗИ СА в зависимости от пола средние значения ТИМ и частота случаев с ТИМ> 9 мм не различались. Однако количество АСБ было статистически значимо больше у мужчин (Рисунок 17).

Анализ результатов корреляционного исследования показал, что возраст положительно коррелировал с ТИМ правой СА (r=0,568, p<0,001) и ТИМ левой СА (r=0,543, p<0,001), а также с количеством АСБ (r=0,577, p<0,001). Кроме того, значимая отрицательная корреляция наблюдалась между ЛВП и ТИМ левой

CA (r = -0.319, p = 0.045). HbA1c показал положительную корреляцию с ТИМ правой (r = 0.322, p = 0.043) и левой CA (r = 0.332, p = 0.037) (Таблица 9).

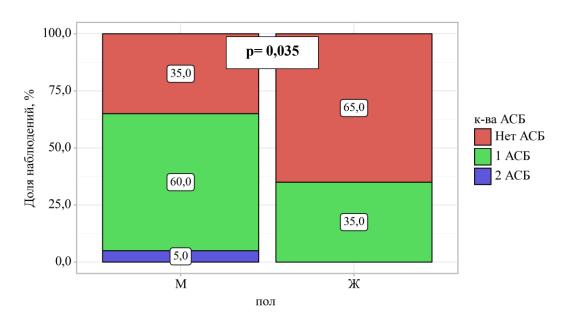


Рисунок 17 – Анализ количества АСБ в зависимости от пола

Из 40 пациентов с выполненным УЗИ СА, 20 человек входили в группу А (50,0% женщин) и 20 человек — в группу Б (50,0% женщин). Средний возраст не различался между группами, составив $49,5\pm7,9$ лет и $50,5\pm11,2$ лет соответственно (p= 0,745).

Средние значения ТИМ правой и левой СА не продемонстрировали значимых различий между группами А и Б. Аналогичная ситуация наблюдалась и в отношении максимального стеноза в каротидном бассейне (Таблицы 10).

Частота случаев с ТИМ> 0,9 мм также была сходной между группами. В правой СА данный показатель наблюдался у 5,0% участников группы А и 10,0% участников группы Б (p = 0,952). Для левой СА частота превышения ТИМ> 0,9 мм составила по 10,0% в обеих группах (p = 1,000), что свидетельствует об отсутствии статистически значимых различий. Кроме того, анализ количества АСБ не выявил различий между группами (Рисунок 18).

Таблица 9 – Корреляционные зависимости антропометрических и метаболических показателей с параметрами УЗИ СА

	ТИМ	дняя правая СА	Средняя ТИМ левая СА		Максимальны й стеноз в каротидном бассейне		Количество АСБ	
	R	р	R	р	R	р	R	р
Возраст	0,568	< 0,001	0,543	< 0,001	0,145	0,577	0,525	< 0,001
ИМТ	0,244	0,129	-0,166	0,307	0,066	0,801	0,089	0,583
САД	0,051	0,755	0,032	0,843	-0,005	0,986	0,108	0,506
ДАД	0,114	0,483	-0,081	0,618	-0,088	0,737	0,196	0,225
чсс	0,259	0,106	-0,259	0,107	0,082	0,754	0,047	0,772
Окружность тали	0,230	0,153	-0,133	0,412	-0,161	0,538	0,144	0,377
Окружность бедр	0,010	0,951	0,070	0,666	0,070	0,790	0,077	0,638
OXC	0,046	0,777	0,085	0,603	0,314	0,219	0,111	0,496
лнп	0,081	0,619	0,002	0,989	0,387	0,125	0,008	0,961
ЛВП	0,173	0,287	-0,319	0,045	-0,068	0,796	-0,114	0,482
ТΓ	0,185	0,252	0,289	0,071	0,034	0,898	0,003	0,984
Глюкоза	0,031	0,848	-0,094	0,565	0,017	0,949	0,249	0,122
Hb _{A1c}	0,322	0,043	0,332	0,037	-0,125	0,633	0,285	0,074

Примечание — ${\bf R}$ — коэффициент корреляции Спирмена, — ${\bf p}$ — уровень статистической значимости. Значения р <0,05 считаются статистически значимыми.

Частота случаев с ТИМ более 0,9 мм в правой СА составила 5,0% среди участников группы А и 10,0% среди участников группы Б, при этом различия между группами не достигли статистической значимости (p = 0,952). В отношении левой СА частота превышения ТИМ> 0,9 мм оказалась одинаковой в обеих группах, составив по 10,0% (p = 1,000).

Кроме того, количество выявленных AC также не различалось между группами (Рисунок 18).

Таблица 10 – Описательная статистика количественных переменных УЗИ СА в зависимости от группы

	Группа А	Группа Б	
Показатели	$M\pm SD/Me[Q_1-$	$M \pm SD / Me [Q_1 -$	p
	Q_3	Q ₃]	
\mathbf{C} редняя ТИМ правая $\mathbf{C}\mathbf{A}$, $\mathbf{M} \pm \mathbf{S}\mathbf{D}$ (мм)	0.7 ± 0.2	0.7 ± 0.1	0,350
Средняя ТИМ левая CA, Ме (мм)	0,6 [0,5 – 0,8]	0,7 [0,6 – 0,8]	0,159
Максимальный стеноз в каротидном бассейне (%)	20,8 ± 6,1	$20,6 \pm 6,6$	0,951

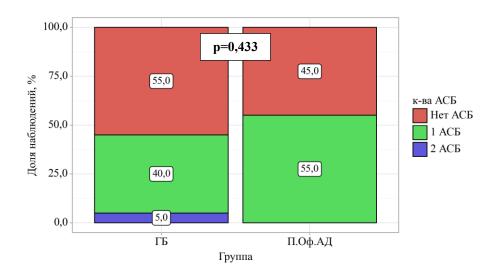


Рисунок 18 – Анализ количества АСБ в зависимости от группы

Результаты УЗИ БА у 40 обследованных пациентов показали, что ТИМ находилась в пределах нормы (правая БА: 0.7 мм [Q1 - Q3: 0.6 - 0.8]; левая БА: 0.7 мм [Q1 - Q3: 0.6 - 0.8]). В то же время у 15% и 10% пациентов ТИМ превышала 0.9 мм в правой и левой БА соответственно. У 17,5% обследованных была выявлена хотя бы одна АСБ. Чаще всего АСБ локализовались в бифуркации общей левой БА - 35,7% и общей правой БА - 28,6%. По 14,3% АСБ обнаружено в бифуркациях общей правой и общей левой БА, тогда как 7.1% находились в правой поверхностной БА. Средний уровень суммарного стеноза БА составил $34.0 \pm 8.0\%$.

При анализе показателей УЗИ БА в зависимости от пола средние значения ТИМ, частота случаев с ТИМ> 9 мм и количество АСБ не различались.

Корреляционный анализ показал значимые положительные связи между возрастом и ТИМ БА. Возраст достоверно коррелировал с ТИМ правой БА (r = 0.586, p < 0.001) и ТИМ левой БА (r = 0.627, p < 0.001) (Таблица 11).

Таблица 11 – Корреляционные зависимости антропометрических и метаболических показателей с параметрами УЗИ БА

	Средняя ТИМ правая БА		ТИМ	Средняя ТИМ левая БА Суммарны бедренном		і копи		чество АСБ	
	R	p	R	p	R	р	R	p	
Возраст	0,586	<0,001	0,627	< 0,001	0,602	0,153	0,139	0,394	
ИМТ	0,179	0,269	-0,082	0,617	0,320	0,484	-0,133	0,412	
САД	0,097	0,550	0,097	0,552	-0,441	0,321	-0,131	0,421	
ДАД	-0,045	0,782	0,025	0,876	-0,270	0,559	-0,245	0,127	
ЧСС	0,205	0,205	0,295	0,065	-0,317	0,488	-0,057	0,728	
Окружность тали	-0,152	0,351	-0,101	0,535	0,219	0,636	-0,245	0,127	
Окружность бедр	0,041	0,800	0,121	0,458	0,789	0,035	0,245	0,127	
OXC	0,115	0,480	0,228	0,157	-0,053	0,910	0,116	0,477	
лнп	0,102	0,533	0,163	0,314	0,062	0,896	0,072	0,659	
ЛВП	0,014	0,930	0,008	0,961	-0,414	0,356	-0,046	0,780	
ΤΓ	-0,127	0,436	-0,086	0,596	0,365	0,421	-0,201	0,213	
Глюкоза	0,087	0,595	0,088	0,590	0,598	0,156	-0,166	0,306	
Hb _{A1c}	0,172	0,288	0,248	0,123	0,275	0,550	-0,110	0,500	

Примечание — ${\bf R}$ — коэффициент корреляции Спирмена, — ${\bf p}$ — уровень статистической значимости. Значения р <0,05 считаются статистически значимыми.

Кроме того, наблюдалась положительная корреляция между окружностью бедер и суммарным стенозом в БА (r = 0.789, p = 0.035) (Таблица 11).

При сравнении показателей УЗИ БА между группами А и Б средняя ТИМ, а также частота случаев с ТИМ> 0,9 мм для правой и левой БА не имели значимых различий. Аналогичная картина наблюдалась для суммарного стеноза в бедренном бассейне и количества АСБ (р>0,05 для всех показателей).

ГЛАВА 5. ОЦЕНКА СС РИСКА ПО ШКАЛЕ SCORE И SCORE 2

Комплексная оценка СС риска в исследовании проводилась по шкале SCORE и SCORE 2 для стран с высоким риском, так как они были валидирована для России [5].

При оценке 10-летнего риска любых фатальных кардиоваскулярных осложнений в общей выборке по шкале SCORE, медиана риска составила 1,3% [Q1-Q3: 0.3 - 3.3%]. Количество обследованных с высоким и очень высоким 10-летним риском (>5%) составило 14,7%, остальные имели низкий или умеренный риск.

Следует отметить, что у работающих пациентов риск был статистически значимо меньше и составил 1,0% [Q1-Q3: 0,2-2,7%] против 2,4% [Q1-Q3: 1,0-4,4%] у не работающих. При этом высокий и очень высокий риск встречался значительное реже у работающих (12,5% против 21,6%, p = 0,003).

При сравнении риска в зависимости от образования, нам не удалось установить статистически значимых различий. Медиана риска составила 0.6% [Q1-Q3: 0.3-1.9%], 1.4% [Q1-Q3: 0.5-3.2%] и 1.3% [Q1-Q3: 0.2-3.6%] при начальном, среднем и высшем образовании соответственно (p= 0.056). Частота высокого и очень высокого риска также не различалась и составила 8.3%, 13.9% и 17.2% соответственно (p=0.186). Низкая обеспеченность исследуемых была связанна с увеличением риска, при низкой обеспеченности медиана составила 1.9% [Q1-Q3: 0.7-3.3%], при средней обеспеченности 1.2% [Q1-Q3: 0.3-3.4%] а при высокой обеспеченности 0.7% [Q1-Q3: 0.1-2.7%] (p=0.049). Однако частота высокого и очень высокого риска отличалась статистическо-значимо в зависимости от обеспеченности (p=0.214). СС риск был выше у одиноких пациентов и составил 1.0% [Q1-Q3: 0.2-2.3%] против 1.5% [Q1-Q3: 0.5-4.0%] у пациентов, живущих в семье (p <0.001). Частота высокого и очень высокого риска также различалась и составила 8.9% и 19.6% соответственно (p <0.001).

Вредные привычки такие, как употребление алкоголя были напрямую связаны с увеличением риска и частоты высокого и очень высокого риска. Самая большая частота высокого и очень высокого риска была у пациентов,

употребляющих алкоголь 1 раз в неделю и чаще (Таблица 12).

Таблица 12 – Анализ риска в зависимости от употребления алкоголя

		употреб	ление алко	РПОЛС					
Показатель	Категории	1 раз/ нед и чаще	1 раза в мес и чаше	реже 1р/мес	p				
Риск по	умер/низкий риск	n=87 (74,4%)	n=216 (86,7%)	n=305 (87,9%)	0,001* р _{1 раз/ нед и чаще – 1 раза}				
Риск по шкале SCORE	Высокий/очень высокий	n=30 (25,6%)	n=33 (13,3%)	n=42 (12,1%)	в мес и чаще = 0,007* р1 раз/ нед и чаще – реже 1р/мес = 0,001*				
Приме	Примечание $-*$ – различия показателей статистически значимы (р <0,05).								

При сопоставлении риска по шкале SCORE в зависимости от ИМТ, нами были установлены статистически значимые различия, у пациентов с нормальным ИМТ риск составил 0.4% [Q1-Q3: 0.1-1.9%], при избыточной МТ - 1.5% [Q1-Q3: 0.4-3.9%] а при ожирении - 1.4% [Q1-Q3: 0.5-3.2%] (р <0,001 р избыточная МТ – норма <0,001, р ожирение – норма <0,001).

У исследуемых с избыточной МТ и с ожирением высокий и очень высокий риск встречался чаще, чем у исследуемых с нормальном ИМТ (Таблица 13).

Таблица 13 – Анализ риска в зависимости от ИМТ

Поморожани	Изторожин			P	
Показатель	Категории	Норма	Избы. МТ	Ожирение	
Риск по шкале SCORE	умер/низкий риск	98 (92,5)	217 (82,2)	293 (85,4)	0,042* р _{Норма –} _{Избы. МТ} =
	Высокий/очень высокий	8 (7,5)	47 (17,8)	50 (14,6)	0,037 р _{Ожирение – Норма} = 0,041
Приме	чание – * – разли	чия показател	ей статистичес	ки значимы (р	<0,05).

При оценке связи риска и окружностью талии была установлена слабой тесноты прямая связь. Наблюдаемая зависимость описывается уравнением парной линейной регрессии: Yриск = $0.034 \times X$ окружность талии - 0.697. При увеличении окружности талии на 1 см следует ожидать увеличение риска на 0.034 %.

У пациентов с высоким и очень высоким риском окружность талии составила 102.8 см [Q1-Q3: 95.4 - 108.0 см] против 98.0 см [Q1-Q3: 90.0 - 108.0 см] при риске ниже 5% (p=0,001). При оценке связи риска и окружности бедра связь отсутствовала.

При оценке связи риска и ДАД, была установлена слабой тесноты прямая связь. Наблюдаемая зависимость описывается уравнением парной линейной регрессии: Уриск = 0,076 × Х ДАД - 4,301. При увеличении ДАД на 1 мм рт.ст. следует ожидать увеличение риска на 0,076 %. Однако уровень ЧСС не был связан с увеличением риска по шкале SCORE.

При анализе уровни показателей биохимического анализа крови в зависимости от риска по шкале SCORE нам удалось выявить, что у исследуемых с высоким и очень высоким риском были более высокие уровни глюкозы, ЛНП, НЬА1с, креатинина, билирубина, ГГТ и ЩФ (Таблица 14).

При оценке связи риска и глюкозы была установлена слабая прямая связь. Наблюдаемая зависимость SCORE от глюкозы описывается уравнением парной линейной регрессии: $Y_{SCORE} = 0.179 \times X_{\Gamma_{ЛЮКОЗа}} + 1.651$. При увеличении глюкозы на 1 ммоль/л следует ожидать увеличение SCORE на 0,179 %. Следует отметить у пациентов с нарушение гликемии натощак и с глюкозы ≥ 7 ммоль/л медиана риска была статистически -значимо выше (Таблица 15).

Схожая картина наблюдалась при анализе уровня HbA1c, где была установлена умеренной тесноты прямая связь. Наблюдаемая зависимость описывается уравнением парной линейной регрессии: $Y_{\text{риск}} = 0,056 \times X$ HbA1c + 2,374. При увеличении HbA1c на 1% следует ожидать увеличение SCORE на 0,056%.

Таблица 14 — Медиана биохимических показателей в зависимости от ССР по шкале SCORE

Показатель	умеренний/низкий	Высокий/очень	р
	риск, Me [Q ₁ – Q ₃]	высокий, $Me [Q_1 - Q_3]$	_
Глюкоза (ммоль/л)	5,3 [4,9 – 5,8]	5,6 [5,1 – 6,2]	< 0,001*
HbA1c (%)	5,3 [5,1 – 5,5]	5,5 [5,2 – 5,6]	0,008*
ЛВП (ммоль/л)	1,4 [1,2 – 1,7]	1,4 [1,2 – 1,6]	0,095
ЛНП (ммоль/л)	3,9 [3,2 – 4,6]	4,2 [3,4 – 4,8]	0,019*
ТГ (ммоль/л)	1,4 [1,0 – 2,1]	1,5 [1,1 – 2,1]	0,768
Креатинин (мколь/л)	70,0 [64,0 – 79,0]	83,0 [75,0 –96,0]	< 0,001*
СРБ (мг / л)	2,0 [1,0 – 4,2]	2,3[1,1-4,7]	0,356
Фибриноген (г/л)	4,3 [3,6 – 5,1]	4,4[3,7-5,2]	0,398
BNP (пг/мл)	17,5 [10,0 – 37,4]	21,8 [10,0–40,7]	0,256
Инсулин (мкЕд/мл)	10,6 [7,2 – 16,3]	9,9 [6,5 – 13,9]	0,158
Билирубин общий	10,0 [7,0 – 13,0]	11,0 [8,0-14,0]	0,045*
(мколь/л)			
ГГТ (е/л)	28,0 [19,0 – 51,5]	30,0 [23,0–47,0]	0,044*
ЩФ (е/л)	69,0 [56,0 – 84,0]	73,0 [65,0-86,0]	0,002*
АСТ (е/л)	18,0 [15,0 – 23,0]	19,0 [16,0 –22,0]	0,186
АЛТ (е/л)	16,0 [11,0 – 22,0]	15,0 [11,0 -21,0]	0,505
Д- димер (нг/мл)	204,2 [184,4 -240,3]	208,1 [184,9 – 255,2]	0,376
ДГЭА (нг/мл)	4,6 [2,8 – 7,4]	4,7 [2,6 – 7,1]	0,909
Примечание – * –	различия показателей стат	гистически значимы (р <0,05).

Таблица 15 – Анализ риска в зависимости от глюкозы

Категории	Me	$Q_1 - Q_3$	P				
норма	1,0	0,2-2,9	<0,001*				
нарушение гликемии	1,9	0,6-4,1	рнарушение гликемии				
натощак	1,7	0,0 - 4,1	натощак – норма <				
			0,001				
глюкоза ≥ 7	1,5	0,6-3,4	р глюкозы ≥ 7– норма=				
			0,008				
Примечание $-*-$ различия показателей статистически значимы (р <0,05).							

При анализе риска в зависимости от показателей липидного обмена была установлена слабая прямая связь с уровнем $T\Gamma$, описываемая уравнением парной линейной регрессии: Yриск = $0,1 \times X$ Т $\Gamma + 2,511$ и слабая прямая связь с уровнем

ЛНП, описываемая уравнением парной линейной регрессии: Уриск = $0.577 \times XЛНП + 0.381$. Следует отметить, что у исследуемых с дислипидемией ССР был статистически значимо выше (Рисунок 19).

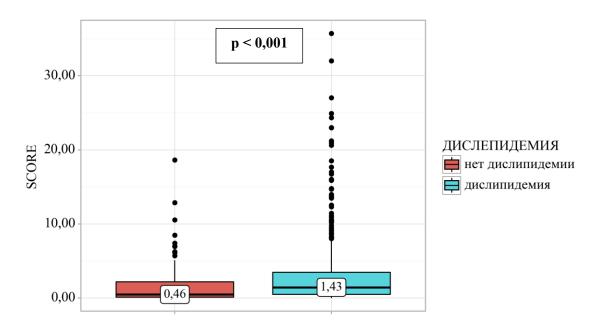


Рисунок 19 – Анализ сердечно-сосудистого риска по шкале SCORE в зависимости от наличия дислипидемии

При анализе СС риска в зависимости от группы было выявлено, что в группе пациентов с диагнозом ГБ риск был статистически значимо выше, чем в группе исследуемых с однократным $\Pi O \phi A J$ (p= 0,011) (Рисунок 20).

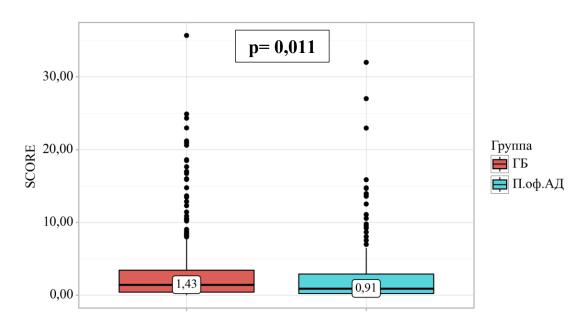


Рисунок 20 – Анализ риска в зависимости от группы

Следует также отметить, что количество пациентов с высоким и очень высоким риском при этом статистически значимо не различалось (Таблица 16).

Поморожани	Vотого р ии	Гру		
Показатель	Категории	Группа А	Группа Б	p
Сердечно-	умеренний/низкий	n=395	n=213	
	риск	(84,6%)	(86,6%)	0.472
сосудистый риск	Высокий/очень высокий	n=72 (15,4%)	n=33 (13,4%)	0,473

При оценке 10-летниего риска фатальных и не фатальных ССС у 571 исследуемых старше 40 лет по шкале SCORE 2, медиана риска составила 11,0% [Q1-Q3: 6,0-16,0%]. Количество обследованных с высоким и очень высоким 10-летним риском ($\geq 7,5\%$ для людей младше 50 лет, $\geq 10\%$ для людей 50–69 лет) составило 62,0%, остальные имели низкий или умеренный риск.

Следует отметить, что у работающих исследуемых риск был статистически значимо меньшим и составил 10,0% [Q1-Q3: 6,0-14,0%] против 13,0% [Q1-Q3: 9,0-18,0%] у не работающих (р <0,001). При этом высокий и очень высокий риск встречался значительное реже у работающих (р <0,001) (Рисунок 21).

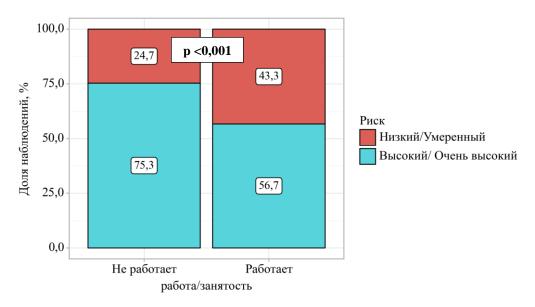


Рисунок 21- Анализ риска по шкале SCORE2 в зависимости от занятости

При сравнении риска в зависимости от образования, нам не удалось установить статистически значимых различий. Медиана риска составила 9.0% [Q1-Q3: 5.0 - 14.5%], 11.0% [Q1-Q3: 7.0 - 15.25%] и 11.0% [Q1-Q3: 6 - 16.0%] при начальном, среднем и высшем образовании соответственно (p= 0.438). Частота высокого и очень высокого риска также не различалась и составила 45.2%, 63.1% и 63.1% соответственно (p=0.135).

В отличие от ССР по шкале SCORE низкая обеспеченность исследуемых не была связанна с увеличением риска по шкале SCORE2, при низкой обеспеченности медиана составила 11,0% [Q1-Q3: 8,0-15,0%], при средней обеспеченности - 11,0% [Q1-Q3: 6,0-16,0%] а при высокой обеспеченности - 10,0% [Q1-Q3: 6,0-16,0%] (р=0,473). Частота высокого и очень высокого риска в зависимости от обеспеченности также статистически значимо не отличалась и составила 72,0% 60,4% и 59,6% соответственно (р=0,133). ССР был выше у одиноких пациентов и составил 11,0% [Q1-Q3: 7,0-16,8%] против 10,0% [Q1-Q3: 6,0-14,0%] у пациентов, живущих в семье (р=0,028). Частота высокого и очень высокого риска также различалась и составила 65,3% и 56,7% соответственно (р <0,041).

При анализе зависимости уровня SCORE2 от частоты употребления алкоголя статистически значимых различий не выявлено. Медианные значения SCORE2 среди участников различались следующим образом: для тех, кто употреблял алкоголь 1 раз в неделю или чаще — 11,0% [Q1-Q3: 8,0—16,5%], 1 раз в месяц или чаще — 10,0% [Q1-Q3: 6,0—15,0%], и для тех, кто употреблял алкоголь реже 1 раза в месяц — 11,0% [Q1-Q3: 7,0—16,0%] (р = 0,136). Частота высокого/очень высокого риска также не различалась и составила 70,9%, 57,3% и 62,7% соответственно (р=0,105).

При анализе зависимости риска по шкале SCORE2 от ИМТ статистически значимых различий выявлено не было (p = 0,384). Медианные значения SCORE2 для различных категорий по ИМТ показали незначительные различия: у пациентов с нормальным ИМТ – 9,0% [Q1-Q3: 5,0–14,8%], при избыточной МТ – 11,0% [Q1-Q3: 6,0–16,0%], и при ожирении – 11,0% [Q1-Q3: 7,0–15,0%]. В ходе анализа частоты высокого и очень высокого риска по SCORE2 среди разных групп ИМТ

статистически значимых различий также выявлено не было (p = 0,402). Высокий и очень высокий риск наблюдался у 54,5% пациентов с нормальным ИМТ, 63,6% с избыточной МТ и 62,5% у пациентов с ожирением.

При оценке взаимосвязи между SCORE2 и окружностью талии выявлена слабая положительная корреляция ($\rho = 0.143$), значимая на уровне р <0,001. Это указывает на то, что увеличение окружности талии связано с повышением уровня SCORE2. Уравнение линейной регрессии (Үриск = 0,071 × ХОкружность тали + 4,455) описывает эту связь: при увеличении окружности талии на 1 см следует ожидать увеличение риска по шкале SCORE2 на 0,071%. Сравнение окружности талии в зависимости от риска показало статистически значимые различия между группами низкого/умеренного и высокого/очень высокого риска (p = 0.029). Медиана окружности талии в группе с низким и умеренным риском составила 98,2 см [Q1-Q3: 89,5–107,0], в то время как в группе высокого и очень высокого риска – 100,0 см [Q1-Q3: 92,0–109,0] (Рисунок 22).

В то же время, анализ связи между риском по шкале SCORE2 и окружностью бедер показал отсутствие статистически значимой зависимости (ρ = -0,020; p = 0,635). Медианы окружности бедер для групп низкого/умеренного и высокого/очень высокого риска также статистически значимо не различались (p = 0,141).

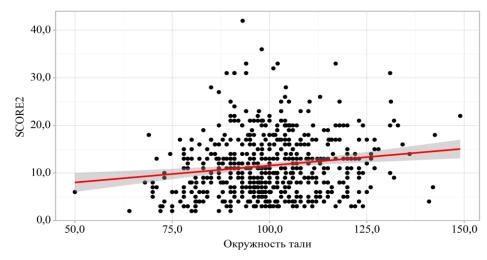


Рисунок 22 – График регрессионной функции, характеризующий зависимость SCORE2 от окружности талии

При анализе зависимости риска от ДАД также выявлена слабая прямая

корреляция (ρ =0,256, р <0,001). Согласно уравнению YSCORE2=0,138×ХДАД-1,239, при увеличении ДАД на 1 мм рт. ст. ССР по шкале SCORE2возрастает на 0,138%. Сравнение ДАД в зависимости от уровня риска показало, что у пациентов с высоким и очень высоким риском медиана ДАД составила 94,5 мм рт. ст. [Q1-Q3: 88,0–100,8 мм рт.ст.], что также значительно выше, чем у пациентов с низким и умеренным риском (90,0 мм рт. ст. [Q1-Q3: 81,0–94,0 мм рт.ст.], р <0,001). ROC-анализ для ДАД показал пороговое значение 96,0 мм рт. ст., с чувствительностью 47,2% и специфичностью 79,6% (AUC = 0,633; р <0,001), что подтверждает значимость модели для прогнозирования высокого риска (Рисунок 23).

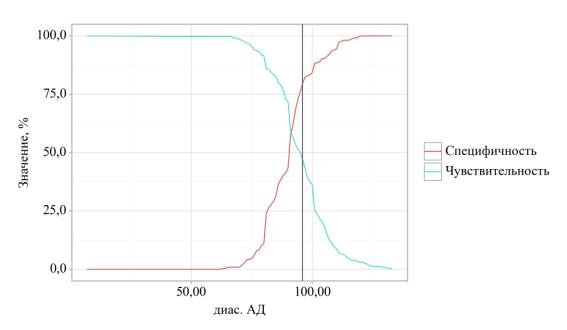


Рисунок 23 — Анализ чувствительности и специфичности модели в зависимости от пороговых значений ДАД

При анализе уровней показателей биохимического анализа крови в зависимости от риска по шкале SCORE2 нам удалось выявить, что у исследуемых с высоким и очень высоким риском были более высокие уровни глюкоза, HbA1c, креатинина, BNP, ГГТ, АСТ и ЩФ, и более низкие уровни ЛВП (Таблица 17).

При оценке связи риска по шкале SCORE2 и уровня глюкозы была установлена слабая прямая связь. Наблюдаемая зависимость SCORE от глюкозы описывается уравнением парной линейной регрессии: Y(риск) = 0,169 × X(глюкоза)

+ 10,576. Это означает, что при увеличении уровня глюкозы на 1 ммоль/л следует ожидать увеличение показателя SCORE на 0,169 %.

Таблица 17 – Медиана биохимических показателей в зависимости от ССР по шкале SCORE 2

Показатель	умеренний/низкий	Высокий/очень	p			
	риск, Me [Q ₁ – Q ₃]	высокий, Me $[Q_1 -$				
		Q_3]				
Глюкоза (ммоль/л)	5,2[4,9-5,7]	5,5 [5,0 – 5,9]	< 0,001*			
HbA1c (%)	5,3 [5,1 – 5,5]	5,4 [5,2 – 5,6]	0,002*			
ЛВП (ммоль/л)	1,5 [1,3 – 1,8]	1,4 [1,2 – 1,7]	< 0,001*			
ТГ (ммоль/л)	1,4[1,0-2,0]	1,5 [1,1 – 2,2]	0,061			
Креатинин (мколь/л)	69,0 [63,0 – 77,0]	73,0 [66,0 – 83,0]	< 0,001*			
СРБультрачувствительный	2,1 [1,0 – 5,0]	2,2 [1,2 – 4,4]	0,592			
(мг / л)						
Фибриноген (г/л)	4,4 [3,6 – 5,1]	4,4 [3,8 – 5,3]	0,251			
BNP (пг/мл)	18,3 [10,0-37,6]	23,8 [10,6 – 45,5]	0,004*			
Инсулин (мкЕд/мл)	10,4 [7,1 – 16,4]	10,6 [7,4 – 16,]	0,691			
Билирубин общий	9,0 [7,0 – 13,0]	10,0 [7,0 – 13,0]	0,403			
(мколь/л)						
ГГТ (е/л)	26,0 [17,0 – 44,0]	29,0 [20,0 – 55,0]	0,016*			
ЩФ (е/л)	69,0 [53,0 – 85,0]	72,0 [62,0 – 86,0]	0,009*			
ACT (e/л)	17, [15,0-22,0]	19,0 [15,0 – 23,0]	0,024*			
АЛТ (е/л)	15,0 [11,0 – 20,0]	16,0 [12,0 – 21,0]	0,113			
Д- димер (нг/мл)	209,2 [188,3 – 247,2]	208,5 [185, -253,2]	0,899			
ДГЭА (нг/мл)	4,2 [2,6 – 5,9]	4,0 [2,4 – 6,3]	0,752			
Примечание $-*-$ различия показателей статистически значимы (р <0,05).						

У пациентов с нарушенной гликемией натощак медиана риска была статистически значимо выше, чем у пациентов с нормальным уровнем глюкозы (Таблица 18). Схожая картина наблюдается при анализе частоты высокого и очень высокого риска: 57,6% исследуемых с нормальным уровнем глюкозы, 69,8% с нарушением гликемии натощак и 63,3% с уровнем глюкозы \geq 7 ммоль/л имели высокий или очень высокий риск (p=0,024; р (норма — нарушение гликемии натощак) = 0,020).

Схожая картина наблюдалась при анализе уровня HbA1c, где была установлена слабой тесноты прямая связь. Наблюдаемая зависимость описывается

уравнением парной линейной регрессии: $Y_{SCORE2} = 0,032 \times X$ HbA1c + 11,726. При увеличении HbA1c на 1 % следует ожидать увеличение SCORE на 0,032 %.

Таблица 18 – Анализ риска в зависимости от глюкозы

Категории	Me	$Q_1 - Q_3$	р			
Норма	10,0	6,0-14,3	0,002*			
Нарушение гликемии натощак	12,0	8,0-17,0	рнарушение гликемии натощак –			
Глюкоза ≥ 7 ммоль/л	11,0	7,0-14,0	$_{ m Hopma} = 0.001*$			
Примечание $-*-$ различия показателей статистически значимы (р <0,05).						

Анализ показал отсутствие статистически значимых различий в уровне SCORE2 между группами ГБ и ПОфАД. Медианные значения SCORE2 составили 11,0% [Q1–Q3: 6,0–16,0%] для группы ГБ и 10,0% [Q1–Q3: 6,0–16,0%] для группы ПОфАД (р = 0,490). При анализе риска также не выявлено значимых различий между группами: в группе ГБ высокий и очень высокий риск был зарегистрирован у 62,7% пациентов, тогда как в группе ПОфАД – у 60,1% (р = 0,560). Шансы высокого риска в группе ПОфАД были несколько ниже, чем в группе ГБ в 1,117 раза, но эта разница не достигла статистической значимости (ОШ = 0,895; 95% ДИ: 0,617–1,299).

ГЛАВА 6. ОЦЕНКА ЛЕЧЕНИЯ, ПРИВЕРЖЕННОСТИ К ТЕРАПИИ И ФАКТОРОВ, ВЛИЯЮЩИХ НА ИХ ЭФФЕКТИВНОСТЬ, У ПАЦИЕНТОВ С ГИПЕРТОНИЧЕСКОЙ БОЛЕЗНЬЮ

При оценке антигипертензивной терапии у пациентов с диагнозом ГБ, получающих лечение (467 человек, 62,7% женщин, медиана возраста 52,0 года [Q1-Q3: 44,0 – 58,0 год]), было установлено, что структура антигипертензивной терапии была следующей: монотерапия применялась у 47,5% пациентов, двухкомпонентная терапия у 33,6%, трехкомпонентная терапия у 14,1%, а четырехкомпонентная и более у 4,8% пациентов.

Частота применения отдельных групп препаратов показала, что иАПФ использовались у 54,6% пациентов, ББ у 31,8%, БРА у 26,7%, диуретики у 20,7% и АКК у 17,1% пациентов. Следует отметить, что 10,7% принимали другие АГП, в основном моксонидин 7,6% и метилдопу 2,1%.

Среди пациентов в качестве монотерапии чаще всего назначались иАПФ (50,0%), БРА (18,9%), и ББ (14,6%). Среди пациентов, принимающих два препарата, наиболее распространенными комбинациями были диуретики + иАПФ (21,9%) и ББ + иАПФ (15,1%). Следует отметить, что 2,1% пациентов, принимающих два препарата принимали иАПФ и БРА одновременно. Среди трехкомпонентной терапии наиболее частыми сочетаниями были другой АГП + иАПФ + ББ (14,8%) и АКК + ББ + иАПФ (13,1%).

При оценке эффективности лечения было выявлено, что АД <140/90 мм рт.ст. [7] достигли 33,4% участников. Женщины достигали АД <140/90 мм рт.ст. в 38,9%, что статистическое значимо чаще, чем мужчины - 24,1 % (p = 0,001).

При оценке эффективности лечения в зависимости от возраста была отмечена тенденция к снижению эффективности лечения с увеличением возраста (Рисунок 24) (p=0.013, p35-44-55-64=0.019, p25-34-55-64=0.013).

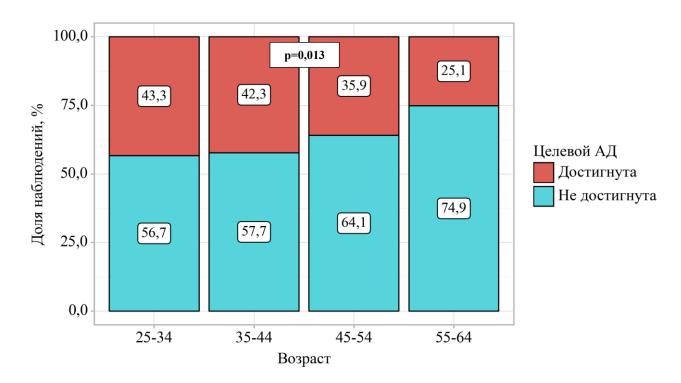


Рисунок 24 – Анализ целевого АД в зависимости от возраста

Пациенты, живущие в семье, достигали целевого уровня АД статистически значимо чаще, чем пациенты, живущие одни. Другие социально-демографические характеристики не оказали эффекта (Таблица 19).

Таблица 19 – Влияние социально-демографических характеристик на достижение целевого АД

Показатель	Категории	Достигнута	Не достигнута	p		
Семейное	Живет один	29,2%	70,8%	0,017*		
положение	Живет в семье	39,8%	60,2%			
образование	Начальное	37,9%	62,1%	0,508		
	Среднее	34,9%	65,1%			
	Высшее	30,1%	69,9%			
работа/занятость	Не работает	31,9%	68,1%	0,650		
	Работает	34,0%	66,0%			
Обеспеченность	Низкая	44,4%	55,6%	0,092		
	Средняя	31,7%	68,3%			
	Высокая	28,9%	71,1%			
Примечание $-*-$ различия показателей статистически значимы (р <0,05).						

Пациенты, получавшие монотерапию всеми классами препаратов, показали статистически сопоставимые результаты достижение целевого АД, за исключением БРА, при применении которых только 17,9% пациентов достигали АД <140/90 мм рт.ст. Этот показатель был статистически значимо ниже по сравнению с АК и ББ (p=0,021; pБРА–ББ=0,020; pБРА–АК=0,008) (Рисунок 25).

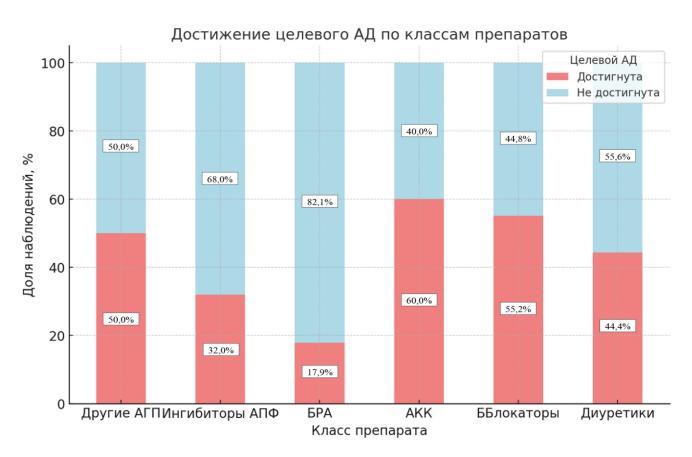


Рисунок 25 – Анализ целевого АД в зависимости от класса препарата

При оценке достижения целевого АД у пациентов, получивших самые распространенные комбинации двух препаратов, было выявлено, что комбинация препаратов из группы ингибиторов ренин-ангиотензин-альдостероновой системы с АКК показала наименьшую эффективность (Рисунок 26) (p=0,034).

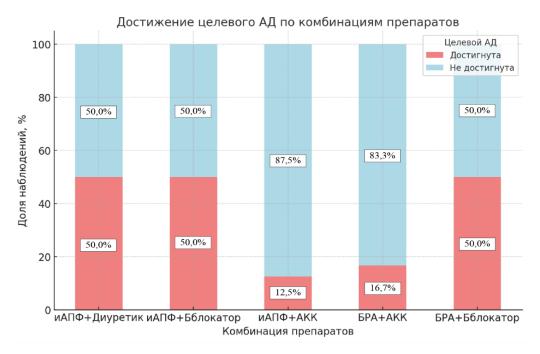


Рисунок 26 – Анализ целевого АД в зависимости от комбинации препаратов

При анализе приверженности пациентов с ГБ по шкале Мориски-Грина было установлено, что только 24,1% имели высокую приверженность (4 балла), 9,9% — недостаточную приверженность (3 балла), а 66,0% — низкую приверженность (<3 баллов). Медиана баллов составила 2,0 балла [Q1–Q3: 0,0–3,0 балла]. При анализе приверженности в зависимости от пола были выявлены статистически значимые различия (p=0,012): женщины при этом продемонстрировали более высокую приверженность по сравнению с мужчинами (27,3% против 19,0%, р <0,001) (Рисунок 27).

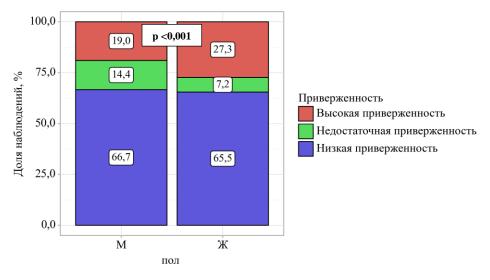


Рисунок 27– Анализ приверженность в зависимости от пола

При оценке связи САД и шкалой Мориски-Грина была установлена слабой тесноты обратная связь (p<0,001). Наблюдаемая зависимость описывается уравнением парной линейной регрессии: $Y_{\text{САД}} = -3,62 \times X_{\text{Шкала Мориски-Грина}} + 148,18$. При увеличении Шкала Мориски-Грина на 1 балл следует ожидать уменьшение САД на 3,6 мм рт.ст. Схожая картина наблюдалась при оценке связи ДАД и шкалой Мориски-Грина, где была установлена слабой тесноты обратная связь (p=0,003). Наблюдаемая зависимость описывается уравнением парной линейной регрессии: $Y_{\text{САД}} = -1,096 \times X_{\text{Шкала}}$ Мориски-Грина + 93,196. При увеличении Шкала Мориски-Грина на 1 балл следует ожидать уменьшение ДАД на 1,1 мм рт.ст.

В результате анализа шкалы Мориски-Грина в зависимости от достижения целевого уровня АД были выявлены статистически значимые различия (p = 0.013). Для оценки зависимости вероятности недостижения целевого уровня АД от значений шкалы Мориски-Грина с использованием ROC-анализа была построена соответствующая ROC-кривая (Рисунок 28).

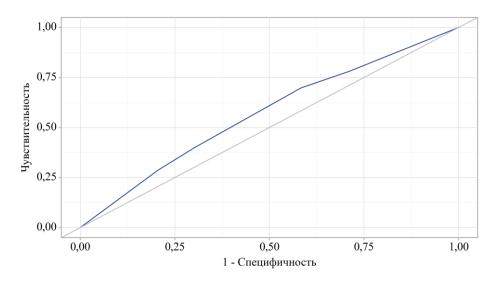


Рисунок 28 – ROC-кривая, характеризующая зависимость вероятности достижения целевого АД от шкалы Мориски-Грина

Площадь под ROC-кривой составила $0,569 \pm 0,028$ с 95% ДИ от 0,513 до 0,624. Модель оказалась статистически значимой (p = 0,013). Пороговое значение шкалы Мориски-Грина, соответствующее наибольшему значению индекса Юдена (точка cut-off), составило 3,0 балла. При значении шкалы Мориски-Грина ниже этого уровня прогнозировалось недостижение целевого уровня АД.

Чувствительность и специфичность модели составили 69,8% и 41,7% соответственно (Рисунок 29).

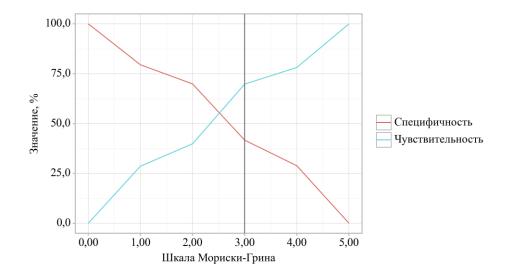


Рисунок 29 — Анализ чувствительности и специфичности модели в зависимости от пороговых значений Шкала Мориски-Грина

Связь между значениями шкалы Мориски-Грина и количеством принимаемых препаратов у каждого пациента отсутствовала (p = 0,300). Схожая картина наблюдалась при анализе взаимосвязи различных социальных показателей и степени приверженности к лечению (p> 0,05 для всех показателей) (Таблица 20).

Таблица 20 — Уровень приверженности к лечению в зависимости от социально-демографических факторов

Показатель		Низкая	Недостаточная	Высокая	P
		привержен	приверженнос	привержен	
		ность (%)	ть (%)	ность (%)	
Обеспеченно	Низкая	56,9	13,9	29,2	0,253
сть	Средняя	67,2	9,8	23,0	
	Высокая	71,1	2,6	26,3	
работа/занято	Не работает	68,9	9,6	21,5	0,658
сть	Работает	64,8	9,9	25,3	
образование	Начальное	58,6	17,2	24,1	0,597
	Среднее	68,0	8,8	23,2	
	Высшее	63,9	10,2	25,9	
Семейное	Живет один	68,3	10,7	21,0	0,130
положение	Живет в	62,4	8,6	29,0	
	семье				

Анализ психоэмоциональных показателей показал отсутствие значимой связи между уровнем стресса, тревоги и депрессии и приверженностью лечению, измеряемой по шкале, Мориски-Грина. Корреляция между стрессом и шкалой Мориски-Грина не была значимой ($\rho=0,066,\,p=0,155$), что указывает на слабую связь между этими показателями. Регрессионная модель показала, что увеличение стресса на 1 балл ассоциируется с повышением баллов по шкале Мориски-Грина на 0,012, объясняя лишь 0,3% дисперсии. Анализ тревоги и депрессии также показал отсутствие значимой корреляции с приверженностью ($\rho=0,085,\,p=0,066$ для тревоги и $\rho=0,040,\,p=0,390$ для депрессии). Увеличение тревоги и депрессии на 1 единицу балл ассоциировалось с минимальным повышением баллов по шкалы Мориски-Грина на 0,025 и 0,013 соответственно, объясняя менее 0,5% дисперсии, что свидетельствует о слабом влиянии этих психоэмоциональных показателей на приверженность.

ГЛАВА 7. СУММАРНАЯ ОЦЕНКА КОНЕЧНЫХ ТОЧЕК ПРИ 7-ЛЕТНЕМ НАБЛЮДЕНИИ

Наблюдение за обследованными лицами с ГБ и с ПОфАД и сбор КТ продолжались в течение 85 месяцев. Из 713 пациентов, включенных в исследовании, через 85 месяцев от даты включения отклик составил 84,2%. Медиана наблюдения составила 83,1 [50,6 — 84,0] месяцев. За это время в наблюдаемой когорте произошло 12 (1,7%) случая смерти, 28 ИМ (3,9%), 11 инсультов (1,5%), у 46 исследуемых (6,5%) диагностировали ИБС и у 21 (2,9%) ХСН. В ККТ было включено 118 событий, что составило 16,5% общей выборки (Таблица 21).

Таблица 21 – Распределение конечных точек по полу

Конечная точка	Общая выборка		Пол		
	%	Мужской, %	Женский, %	P	
Смерть от ССС	1,7	2,5	1,0	0,149	
ИМ	3,9	6,3	2,0	0,004*	
Инсульт	1,5	1,9	1,3	0,553	
ИБС	6,5	5,6	7,1	0,429	
XCH	2,9	2,2	3,6	0,286	
ККТ	16,5	18,5	15,0	0,208	
Примечание $-*-$ различия показателей статистически значимы (р <0,05).					

Для изучения времени до наступления ККТ был проведен анализ Каплана-Мейера. Среднее время до наступления ККТ составило 80,5 месяцев, 95% ДИ 78,8 – 82,1 месяцев. Среди лиц с наличием и отсутствием ККТ были выявлены различия в различных характеристиках, отражающих социально-демографические и клинические параметры. Значимыми факторами оказались наличие работы, уровень обеспеченности, депрессия, показатели риска SCORE >5%, а также повышенные уровни HbA1с и фибриногена.

Лица с наличием ККТ реже имели работу (55,9% против 80,0%, p <0,001), при этом наличие работы оказалось защитным фактором (ОШ 0,362, 95% ДИ 0,252-0,521, p <0,001). Средняя и высокая обеспеченность также чаще встречались у группы без ККТ (78,0% против 88,9%, p=0,001), что подтверждается регрессионным анализом кокса (ОШ 0,454,95% ДИ 0,293-0,702, p <0,001).

Уровень депрессии (HADS>7) был выше у лиц с ККТ (32,2% против 21,0%, p=0,008). Депрессия увеличивала риск развития ККТ почти в два раза (ОШ 1,798, 95% ДИ 1,221–2,646, p=0,003). Среди факторов, связанных с метаболическим и сосудистым риском, ключевую роль играл показатель SCORE>5%, который был значительно выше у лиц с ККТ (28,0% против 12,1%, p<0,001; ОШ 2,567, 95% ДИ 1,716–3,841, p<0,001).

Повышенные уровни HbA1c (>6,5%) также ассоциировались с наличием ККТ (12,7% против 4,4%, р <0,001), увеличивая риск развития ККТ более чем в три раза (ОШ 3,167, 95% ДИ 1,839–5,454, р<0,001). Фибриноген более 4 г/л чаще встречался у лиц с ККТ (73,7% против 58,3%, p=0,002), и его уровень более 4 г/л связано с увеличением риска развития ККТ (ОШ 1,907, 95% ДИ 1,265–2,873, p=0,002) (Таблица 22).

Таблица 22 – Влияние различных факторов на риск наступления ККТ

Ф.Р.	Частота в группах			модель пропорциональных рисков			
	Наличие ККТ %	Отсутствие ККТ %	р	ОШ	95% ДИ	P	
Наличие высшего/ среднего образования	93,2	91,8	0,591	0,893	0,436 – 1,831	0,758	
Наличие работы	55,9	80,0	< 0,001*	0,362	0,252 - 0,521	< 0,001*	
Проживание в семье	54,2	62,9	0,079	0,725	0,505 – 1,041	0,081	
Средняя/высокая обеспеченность	78,0	88,9	0,001*	0,454	0,293 – 0,702	< 0,001*	
Стресс PSS10>20 баллов	18,6	15,6	0,416	1,250	0,786 – 1,986	0.346	
Тревога HADS >7	33,1	28,1	0,275	1,232	0,840 - 1,808	0.286	
Депрессия HADS >7	32,2	21,0	0,008*	1,798	1,221 – 2,646	0.003*	

Продолжение Таблицы 22						
Курение	21,2	27,6	0,152	0,738	0,475 – 1,148	0,178
ЧСС > 80 уд/мин.	18,6	25,7	0,103	0,700	0,441 – 1,113	0,131
Избыточная МТ/ожирение	87,3	83,6	0,318	1,333	0,776 - 2,292	0,298
SCORE >5%	28,0	12,1	< 0,001*	2,567	1,716 – 3,841	< 0,001*
АД >139/89 мм.рт.ст.	78,8	76,8	0,635	1,131	0,727 – 1,759	0,584
ОХС> 4,9 ммоль/л	65,5	64,4	0,812	0,902	0,618 – 1,314	0,590
ЛНП> 3,0 ммоль/л	54,2	55,7	0,767	0,920	0,640 – 1,321	0,651
ТГ> 1,7 ммоль/л	44,1	36,5	0,120	1,322	0,919 – 1,901	0,501
ЛВП <1,0 ммоль/л у мужчин, <1,2 ммоль/л у женщин	17,8	12,9	0,162	1,539	0,960 – 2,468	0,073
Глюкоза натощак ≥5,6 ммоль/л	43,2	37,8	0,271	1,271	0,883 – 1,830	0,197
HbA1c >6,5%	12,7	4,4	< 0,001*	3,167	1,839 – 5,454	< 0,001*
Фибриноген более 4 г/л	73,7	58,3	0,002*	1,907	1,265 – 2,873	0,002*
ГГТ более 50 Е/л	19,5	26,9	0,093	0,699	0,443 - 1,102	0,123
Примечание $-*-$ различия показателей статистически значимы (р <0,05).						

При анализе риска развитие фатального ССС среди изученных ФР статистически значимыми оказались несколько параметров. Наибольший риск был связан с показателем HbA1c >6,5%, который увеличивал вероятность неблагоприятного исхода в 11,1 раза (ОШ 11,139, 95% ДИ 3,346–37,442, р <0,001). Повышенный уровень ТГ (>1,7 ммоль/л) также значимо увеличивал риск (ОШ 3,354, 95% ДИ 1,010–11,139, р=0,048). Повышенное АД (>139/89 мм рт.ст.) ассоциировалось с увеличением риска почти в два раза (ОШ 1,902, 95% ДИ 1,023–5,982, p=0,002). Риск SCORE >5% увеличивал вероятность неблагоприятного исхода в 4,7 раза (ОШ 4,714, 95% ДИ 1,493–14,880, p=0,004) (Рисунок 30).

Среди ФР развития ИМ статистически значимыми оказались два параметра. Наличие работы ассоциировалось со снижением риска в 2,6 раза (ОШ 0,380, 95% ДИ 0,179–0,804, p=0,011). Повышенный уровень липопротеинов низкой плотности (ЛНП >3,0 ммоль/л) увеличивал риск развития ИМ в 1,5 раза (ОШ 1,495, 95% ДИ

1,009–1,936, p=0,038). Остальные факторы не показали статистически значимого влияния (Рисунок 31).

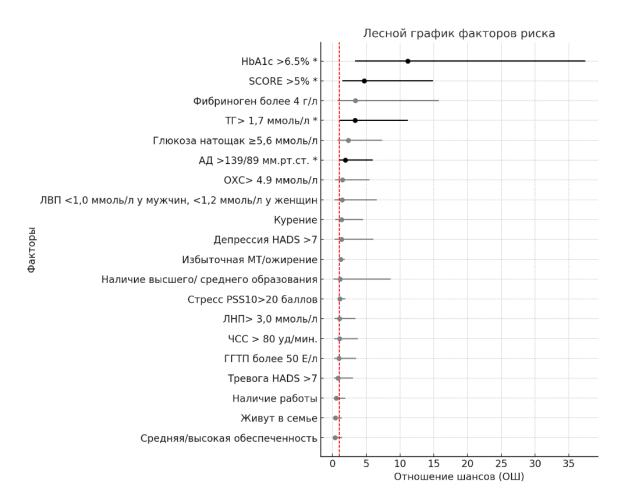


Рисунок 30 – Лесной график (forest plot) ОШ развития фатального ССС для различных ФР

Среднее время до наступления инсульта при анализе кривых Каплана-Мейера, составило 88,7 месяцев, 95% ДИ 88,2 — 89,2 месяцев. Анализ риска развития инсульта с использованием модели пропорциональных рисков Кокса показал, что высокий уровень риска по шкале SCORE (>5%) является значимым фактором, повышающим вероятность инсульта (ОШ 3,966, 95% ДИ 1,158—13,586, p=0,028). При этом такие показатели, как уровень фибриногена >4 г/л (ОШ 3,092, 95% ДИ 0,668—14,310, p=0,149) и HbA1c >6,5% (ОШ 2,350, 95% ДИ 0,299—18,480, p=0,417) демонстрировали тенденцию к увеличению риска, но статистической значимости не достигли. Другие факторы не показали статистически значимого влияния на риск инсульта (p>0,05). (Рисунок 32).

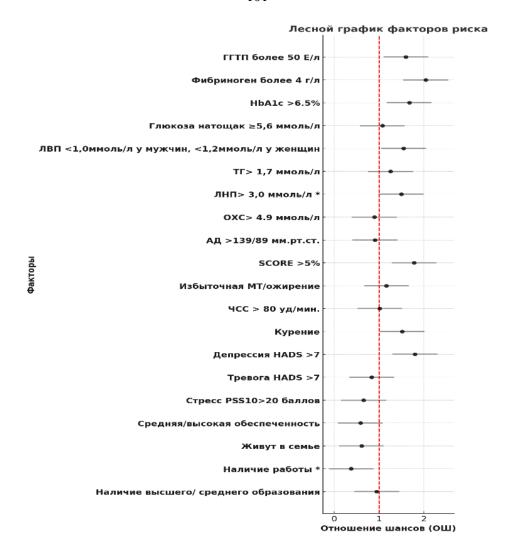


Рисунок 31 – Лесной график ОШ развития ИМ для различных ФР

Анализ риска развития ИБС с использованием модели пропорциональных рисков Кокса выявил, что значимыми ФР являются депрессия (HADS >7), высокий уровень риска по шкале SCORE (>5%), повышенный уровень HbA1c (>6,5%), а также стресс по шкале PSS10 (>20 баллов). Так, депрессия увеличивает вероятность развития ИБС в 2,6 раза (ОШ 2,634, 95% ДИ 1,464–4,739, p=0,001), а стресс – в 1,9 раза (ОШ 1,912, 95% ДИ 1,090–3,693, p=0,044). Высокий уровень HbA1c (>6,5%) также ассоциируется с повышенным риском ИБС (ОШ 3,133, 95% ДИ 1,325–7,412, p=0,009), а SCORE >5% увеличивает риск в 2,3 раза (ОШ 2,331, 95% ДИ 1,205–4,510, p=0,012).

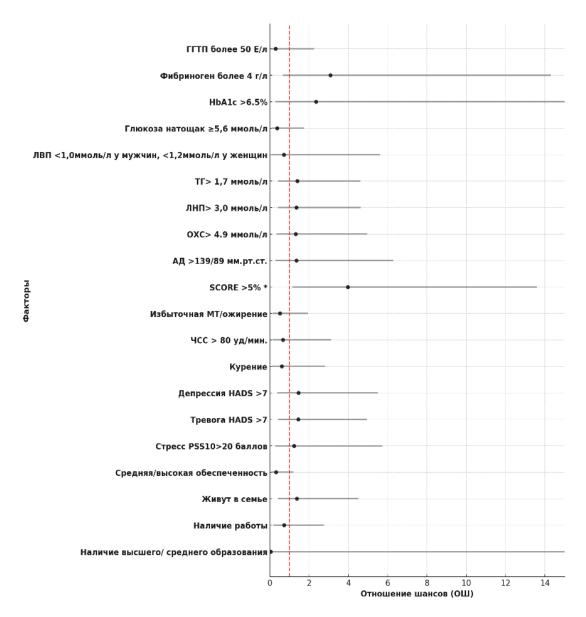


Рисунок 32 – Лесной график ОШ развития инсульта для различных ФР

При этом наличие работы (ОШ 0,343, 95% ДИ 0,192–0,614, р <0,001) и средний/высокий уровень обеспеченности (ОШ 0,436, 95% ДИ 0,158–0,911, р=0,012) являются факторами, снижающими вероятность развития ИБС. Остальные факторы, не продемонстрировали статистически значимой связи с риском ИБС (р>0,05) (Рисунок 33).

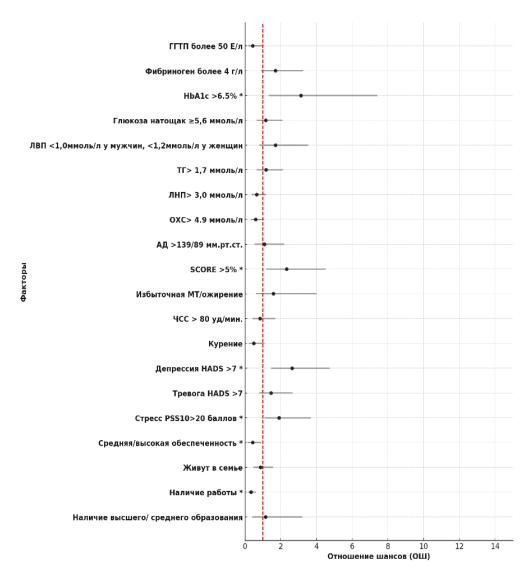


Рисунок 33 – Лесной график ОШ развития ИБС для различных ФР

Анализ риска развития ХСН с использованием модели пропорциональных рисков Кокса показал, что значимыми ФР являются высокий уровень SCORE (>5%), а также повышенная глюкоза натощак (≥5,6 ммоль/л). Так, высокий уровень SCORE (>5%) увеличивает вероятность развития ХСН в 2,6 раза (ОШ 2,627, 95% ДИ 1,018–6,778, р=0,046). Аналогично, глюкоза натощак ≥5,6 ммоль/л ассоциируется с повышением риска развития ХСН более чем в два раза (ОШ 2,234, 95% ДИ 1,109–5,302, р=0,041). Наличие работы (ОШ 0,213, 95% ДИ 0,090–0,506, р<0,001) и средний/высокий уровень обеспеченности (ОШ 0,318, 95% ДИ 0,123–0,820, р=0,018) показали защитный эффект, снижая риск развития ХСН. Остальные факторы не показали статистически значимой связи с риском развития ХСН (р>0,05). (Рисунок 34).

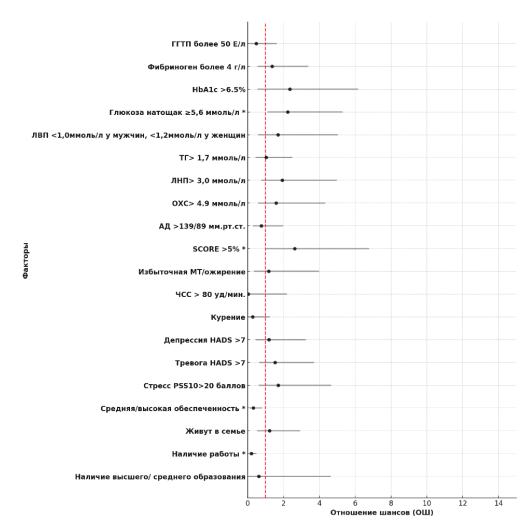


Рисунок 34 – Лесной график ОШ развития ХСН для различных ФР

Среди 467 пациентов с диагнозом ГБ, получавших антигипертензивную терапию, за время наблюдения произошло 6 (1,3%) случаев смерти, 20 ИМ (4,3%), 8 инсультов (1,7%). У 36 исследуемых (7,7%) диагностировали ИБС и у 17 (3,6%) ХСН. В ККТ было включено 87 события, что составило 18,6% общей выборки (Таблица 23).

Для изучения времени до наступления ККТ был проведен анализ Каплана-Мейера. Среднее время до наступления ККТ составило 78,9 месяцев, 95% ДИ 76,7 — 81,0 месяцев. Среди пациентов группы А с наличием и отсутствием ККТ были выявлены различия в социально-демографических и клинических характеристиках. Значимыми ФР развития ККТ оказались отсутствие работы, уровень обеспеченности, депрессия, показатель SCORE >5%, повышенные уровни HbA1c, фибриногена и низкий уровень ЛВП.

Таблица 23 – Распределение конечных точек по полу в группе А с наличием ГБ

V avayya g gayya	Общая выборка	Пол				
Конечная точка	%	Мужской, %	Женский, %	P		
Смерть от ССС	1,3	2,3	0,7	0,202		
ИМ	4,3	6,9	2,7	0,032*		
Инсульт	1,7	2,9	1,0	0,155		
ИБС	7,7	6,9	8,2	0,612		
XCH	3,6	2,9	4,1	0,495		
KKT	18,6	21,8	16,7	0,170		
Примечание $-*-$ различия показателей статистически значимы (р <0,05).						

Лица с наличием ККТ реже имели работу (49,4% против 76,1%, р <0,001), и наличие работы оказалось защитным фактором, снижая риск развития ККТ более чем в два раза (ОШ 0,363, 95% ДИ 0,238-0,553, р <0,001). Средняя и высокая обеспеченность также чаще встречались у группы без ККТ (77,0% против 86,3%, р=0,030), что подтверждается результатами регрессионного анализа Кокса (ОШ 0,539, 95% ДИ 0,327–0,889, p=0,015). Депрессия (HADS>7) была чаще выявлена у лиц с ККТ (34,5% против 23,9%, p=0,043). Она увеличивала риск развития ККТ в 1,6 раза (ОШ 1,634, 95% ДИ 1,050-2,542, р=0,030). Среди сосудистых факторов ключевую роль играл показатель SCORE >5%, который значительно чаще встречался у лиц с ККТ (27,6% против 12,6%, р <0,001). Регрессионный анализ подтвердил, что SCORE >5% увеличивает риск развития ККТ в 2,4 раза (ОШ 2,377, 95% ДИ 1,484–3,807, р <0,001). Повышенные уровни НвА1с (>6,5%) также ассоциировались с наличием ККТ (14,9% против 5,5%, p=0,002), увеличивая риск развития ККТ почти в три раза (ОШ 2,896, 95% ДИ 1,603-5,233, р <0,001). Фибриноген более 4 г/л был чаще выявлен у лиц с ККТ (79,3% против 60,3%, р <0,001), и его повышение связано с увеличением риска развития ККТ в 2,3 раза $(O \coprod 2,324, 95\% \ ДИ 1,383-3,904, p=0,001)$. Низкий уровень $ЛВ\Pi$ (<1,0 ммоль/л у мужчин и <1,2 ммоль/л у женщин) чаще встречался у лиц с ККТ (19,5% против 10,9%, p=0,051), увеличивая риск развития ККТ почти в два раза (ОШ 1,696, 95%

ДИ 1,002—2,882, p=0,049). Остальные факторы не показали статистически значимой связи с риском развития ККТ (p>0,05) (Таблица 24).

Таблица 24 – Влияние различных факторов на наступление ККТ в группе А

	Ча	Частота в группах			модель пропорциональных рисков		
Ф.Р.	Наличия ККТ %	Отсутствия ККТ %	р	ОШ	95% ДИ	р	
Наличие высшего/ среднего образования	93,1	91,6	0,639	0,946	0,412 – 2,168	0,895	
Наличие работы	49,4	76,1	< 0,001*	0,363	0,238 – 0,553	0,001*	
Проживание в семье	52,9	61,8	0,123	0,712	0,467 – 1,084	0,113	
Средняя/высокая обеспеченность	77,0	86,3	0,030*	0,539	0,327 – 0,889	0,015*	
Стресс PSS10>20 баллов	20,7	17,1	0,430	1,181	0,703 – 1,985	0,529	
Тревога HADS >7	34,5	30,8	0,503	1,137	0,731 - 1,769	0,569	
Депрессия HADS >7	34,5	23,9	0,043*	1,634	1,050 – 2,542	0,030*	
Курение	14,9	22,1	0,137	0,677	0,376 - 1,221	0,195	
ЧСС > 80 уд/мин.	17,2	21,8	0,342	0,791	0,453 - 1,380	0,409	
Избыточная МТ/ожирение	87,4	85,0	0,574	1,215	0,646 – 2,286	0,546	
SCORE >5%	27,6	12,6	< 0,001*	2,377	1,484 – 3,807	< 0,001*	
АД >139/89 мм рт.ст.	74,4	65,3	0,018*	1,620	1,087 – 2,472	0,011*	
OXC> 4,9 ммоль/л	66,1	58,6	0,191	0,696	0,454 - 1,067	0,096	
ЛНП> 3,0 ммоль/л	47,1	56,2	0,125	0,686	0,450 - 1,045	0,079	
TГ> 1,7 ммоль/л	37,6	35,6	0,728	1,322	0,866 - 2,017	0,195	
ЛВП <1,0 ммоль/л у мужчин, <1,2 ммоль/л у женщин	19,5	10,9	0,051	1,696	1,002 – 2,882	0,049*	
Глюкоза натощак ≥5,6 ммоль/л	47,1	39,5	0,190	1,342	0,881 - 2,045	0,171	
Hb _{A1c} >6,5%	14,9	5,5	0,002	2,896	1,603 – 5,233	< 0,001*	
Фибриноген более 4 г/л	79,3	60,3	< 0,001*	2,324	1,383 – 3,904	0,001*	
ГГТ более 50 Е/л	18,4	25,0	0,191	0,720	0,418 - 1,238	0,235	
Примечание $-*$ — различия показателей статистически значимы (р <0,05).							

Анализ ФР с использованием модели пропорциональных рисков Кокса выявил, что значимыми предикторами фатального ССС являются высокий уровень SCORE (>5%), повышенный уровень ТГ (>1,7 ммоль/л), а также HbA1c >6,5%.

Так, SCORE >5% повышает риск развития события в 2,2 раза (ОШ 2,249, 95% ДИ 1,010–7,825, p=0,045). Повышенный уровень ТГ (>1,7 ммоль/л) связан с 8-кратным увеличением риска (ОШ 8,150, 95% ДИ 1,052–22,763, p=0,048). Аналогично, высокий уровень HbA1c (>6,5%) значительно повышает риск события, увеличивая его более чем в 9 раз (ОШ 9,101, 95% ДИ 1,648–20,262, p=0,011). Остальные факторы не показали статистически значимой связи с риском события (p>0,05). Однако тенденции к увеличению риска наблюдались для низкого уровня ЛВП (ОШ 3,612, 95% ДИ 0,661–19,726, p=0,138) и повышенного уровня глюкозы натощак (ОШ 3,052, 95% ДИ 0,559–16,667, p=0,198) (Рисунок 35).

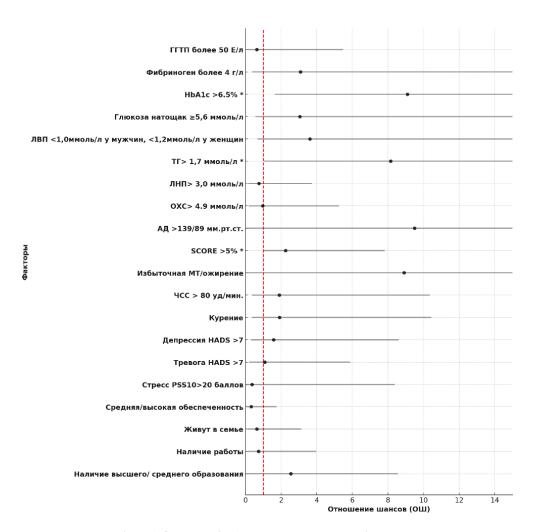


Рисунок 35 – Лесной график (forest plot) ОШ развития фатального ССС в группе А для различных ФР

Анализ ФР с использованием модели пропорциональных рисков Кокса выявил, что Фибриноген >4 г/л был связан с повышением риска ИМ более чем в 5 раз (ОШ 5,447, 95% ДИ 1,264–13,478, p=0,023). Кроме того, наличие работы продемонстрировало защитный эффект, снижая риск развития ИМ в 3 раза (ОШ 0,306, 95% ДИ 0,127–0,738, p=0,008). Остальные факторы, не показали статистически значимой связи с риском ИМ (p>0,05). Тенденция к повышению риска наблюдалась для уровня ГГТ более 50 Е/л (ОШ 2,120, 95% ДИ 0,866–5,189, p=0,100), но результат не достиг статистической значимости. (Рисунок 36)

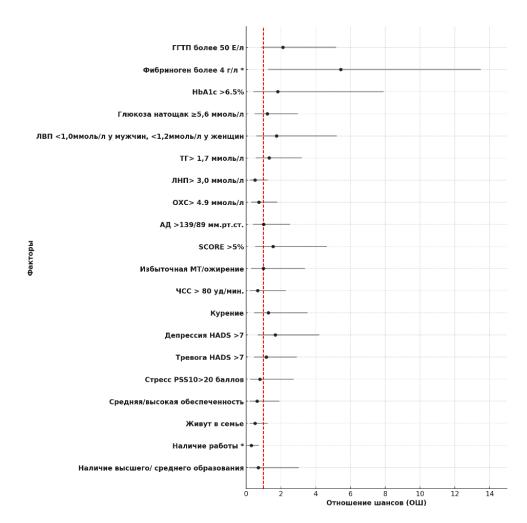


Рисунок 36 – Лесной график (forest plot) ОШ развития ИМ в группе А для различных ФР

Анализ ФР с использованием модели пропорциональных рисков Кокса выявил, что значимым фактором развития инсульта является показатель риска SCORE >5%. Показатель SCORE >5% повышает вероятность события более чем в

4 раза (ОШ 4,161, 95% ДИ 1,143–16,644, p=0,048), что подтверждает его важность в прогнозировании риска. Остальные факторы, не показали статистически значимой связи с риском (p>0,05) (Рисунок 37).

Среди исследуемых выявлены значимые различия в социальнодемографических и клинических характеристиках, влияющих на риск развития ИБС. Ключевыми предикторами риска оказались депрессия (HADS >7), повышенные уровни ОХС >4,9 ммоль/л, ЛНП >3,0 ммоль/л, а также HbA1c >6,5%. Наличие работы показало защитный эффект.

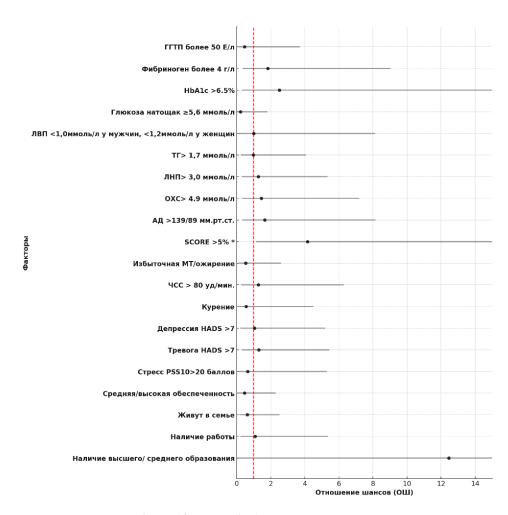


Рисунок 37 – Лесной график (forest plot) ОШ развития инсульта в группе А для различных ФР

Лица с депрессией (HADS >7) имели значительно более высокий риск развития ИБС (ОШ 2,193, 95% ДИ 1,130–4,256, p=0,020). Повышенные уровни ОХС >4,9 ммоль/л (ОШ 1,444, 95% ДИ 1,231–1,855, p=0,015) и ЛНП >3,0 ммоль/л (ОШ 1,439, 95% ДИ 1,222–1,866, p=0,015) также ассоциировались с увеличением

риска. Уровень HbA1c >6,5% повышал риск развития ИБС более чем в три раза (ОШ 3,187, 95% ДИ 1,322–7,683, p=0,010). Наличие работы продемонстрировало защитный эффект, снижая риск события почти в три раза (ОШ 0,374, 95% ДИ 0,194–0,718, p=0,003).

Остальные факторы, включая проживание в семье, стресс, тревогу, избыточную МТ/ожирение, уровень ТГ, уровень глюкозы натощак, фибриноген >4 г/л и ГГТ >50 Е/л, не показали статистически значимой связи с риском события (p>0,05). Однако SCORE >5% (ОШ 2,056, 95% ДИ 0,965–4,379, p=0,062) и низкий уровень ГГТ (ОШ 0,401, 95% ДИ 0,142–1,133, p=0,085) продемонстрировали тенденцию к влиянию на риск (Рисунок 38).

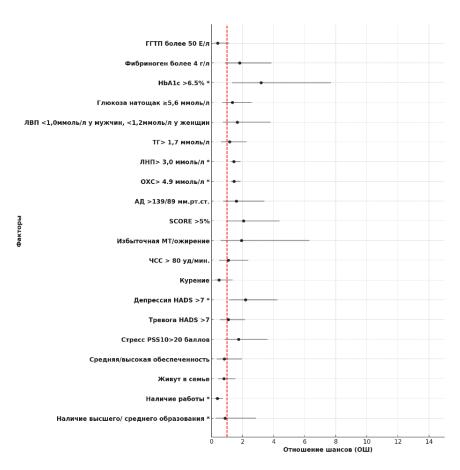


Рисунок 38 – Лесной график (forest plot) ОШ развития ИБС в группе А для различных ФР.

Среди исследуемых выявлены значимые различия в социальнодемографических и клинических характеристиках, влияющих на риск развития XCH. Ключевыми ФР оказались высокий показатель SCORE (>5%), низкий уровень обеспеченности, а наличие работы выступило в качестве защитного фактора. Лица с низким уровнем обеспеченности чаще сталкивались с риском ХСН по сравнению с теми, у кого уровень обеспеченности был средним или высоким. Средняя/высокая обеспеченность снижала вероятность развития события почти в три раза (ОШ 0,294, 95% ДИ 0,109–0,797, p=0,016). Наличие работы также продемонстрировало выраженный защитный эффект, снижая риск развития события в 5 раз (ОШ 0,204, 95% ДИ 0,075–0,551, p=0,002). Высокий показатель SCORE (>5%) оказался значимым предиктором риска, увеличивая вероятность события более чем в три раза (ОШ 3,364, 95% ДИ 1,242–9,113, p=0,017) (Рисунок 39).

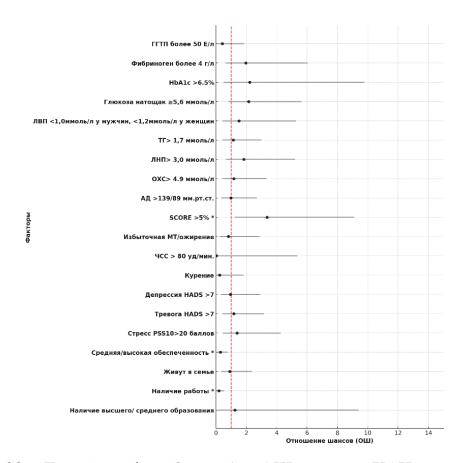


Рисунок 39 – Лесной график (forest plot) ОШ развития XCH в группе A для различных ФР

Среди 246 лиц с ПОфАД (группа Б), не получавших антигипертензивную терапию, за время наблюдения произошло 6 (2,4%) случаев смерти, 8 ИМ (3,3%), 3 инсульта (1,2%), у 10 исследуемых (4,1%) диагностировали ИБС и у 4 (1,6%) - ХСН.

В ККТ было включено 31 событие, что составило 12,6% общей выборки (Таблица 25).

Таблица 25 – Распределение конечных точек по полу в группе Б

Конечная точка	Общая выборка %	Пол			
		Мужской, %	Женский, %	P	
Смерть от ССС	2,4	2,8	2,0	0,980	
ИМ	3,3	5,5	0,0	0,023*	
Инсульт	1,2	0,7	2,0	0,570	
ИБС	4,1	4,1	4,0	1,000	
XCH	1,6	2	2	1,000	
KKT	12,6	14,5	9,9	0,287	
Примечание $-*-$ различия показателей статистически значимы (р <0,05).					

Для изучения времени до наступления ККТ был проведен анализ Каплана-Мейера. Среднее время до наступления ККТ составило 79,5 месяцев, 95% ДИ 77,4 – 81,7 месяцев.

Среди лиц группе Б с наличием и отсутствием ККТ выявлены различия в социально-демографических и клинических характеристиках. Значимыми ФР стали уровень SCORE >5%, повышенные уровни ОХС >4,9 ммоль/л и ЛНП >3,0 ммоль/л. Наличие работы и средний/высокий уровень обеспеченности показали защитный эффект.

Лица с ККТ реже имели работу (74,2% против 88,0%, p=0,045), и наличие работы снижало риск развития ККТ более чем в два раза (ОШ 0,465, 95% ДИ 0,208–0,980, p=0,042). Средняя и высокая обеспеченность также чаще встречались в группе без ККТ (80,6% против 93,5%, p=0,014), что подтверждается регрессионным анализом Кокса (ОШ 0,310, 95% ДИ 0,127–0,757, p=0,010). Уровень SCORE >5% был значимо выше у лиц с ККТ, увеличивая риск развития события более чем в три раза (ОШ 3,040, 95% ДИ 1,396–6,620, p=0,005). Повышенные уровни ОХС >4,9 ммоль/л (80,6% против 62,7%, p=0,048) и ЛНП >3,0 ммоль/л (74,2% против 54,9%, p=0,042) также ассоциировались с увеличением риска. Уровень ОХС увеличивал

риск в 2,3 раза (ОШ 2,341, 95% ДИ 1,081–5,235, p=0,038), а уровень ЛНП – в 2,3 раза (ОШ 2,296, 95% ДИ 1,027–5,134, p=0,043). Остальные факторы, такие как проживание в семье, стресс, тревога, депрессия, курение, ЧСС >80 уд/мин, избыточная МТ/ожирение, глюкоза натощак \geq 5,6 ммоль/л, уровень HbA1c >6,5%, фибриноген >4 г/л и уровень ГГТ >50 Е/л, не показали статистически значимой связи с риском развития ККТ (р>0,05) (Таблица 26).

Таблица 26 – Влияние различных факторов на наступление ККТ в группе Б

Ф.Р.	Частота в группах		модель пропорциональных			
			рисков			
	Наличия	Отсутствия	p	ОШ	95% ДИ	p
	ККТ %	ККТ %				
Наличие высшего/						
среднего	93,5	92,1	0,772	1,278	0,305 - 5,357	0,737
образования						
Наличие работы	74,2	88,0	0,045*	0,465	0,208 - 0,980	0,042*
Живут в семье	58,1	64,7	0,476	0,791	0,388 – 1,615	0,520
Средняя/высокая	80,6	93,5	0,014*	0,310	0,127 – 0,757	0,010*
обеспеченность	80,0					
CTpecc PSS10>20	12,9	13,0	0,985	1,220	0,426 - 3,490	0,711
баллов	12,9	13,0	0,963	1,220	0,420 - 3,490	0,711
Тревога HADS >7	29,0	23,3	0,481	1,356	0,624 - 2,946	0,442
Депрессия HADS	25,8	15,8	0,167	1,990	0,889 – 4,453	0,094
>7	23,6	13,6	0,107	1,990	0,009 - 4,433	0,054
Курение	38,7	37,2	0,872	1,070	0,519 - 2,205	0,855
ЧСС > 80 уд/мин.	22,6	32,6	0,263	0,629	0,271 - 1,461	0,281
Избыточная	87,1	81,1	0,421	1,528	0,535 – 4,368	0,428
МТ/ожирение	07,1					
SCORE >5%				3,040	1,396 – 6,620	0,005*
АД>139/89	06.9	97,2	0,998	0,819	0,112 – 6,010	0,845
мм.рт.ст.	96,8					
OXC> 4,9 ммоль/л	80,6	62,7	0,048*	2,341	1,081 - 5,235	0,038*
ЛНП $> 3,0$ ммоль/л	74,2	54,9	0,042*	2,296	1,027 - 5,134	0,043*
$T\Gamma > 1,7$ ммоль/л	41,9	37,2	0,612	1,268	0,621 - 2,588	0,514
ЛВП <1,0 ммоль/л		13,0	0,985	1,073	0,376 – 3,068	0,895
у мужчин, <1,2	12,9					
ммоль/л у	12,9					
женщин						
Глюкоза натощак	32,3	34,9	0,774	0,964	0,454 - 2,048	0,925
≥5,6 ммоль/л	32,3	34,9	0,774	0,904	0,434 - 2,048	0,923
Hb _{A1c} >6,5%	6,5	2,3	0,216	3,093	0,737 – 12,983	0,123
Фибриноген более	50 1	54.0	0.720	1 122	0,550 - 2,293	0,749
4 г/л	58,1	54,9	0,739	1,123	0,550 - 2,293	0,749
ГГТ более 50 Е/л	22,6	30,2	0,381	0,709	0,305 - 1,645	0,423
Примечание $-*-$ различия показателей статистически значимы (р <0,05).						

Анализ ФР с использованием модели пропорциональных рисков Кокса, который позволяет оценить влияние различных переменных на вероятность наступления события, выявил, что значимыми предикторами фатального ССС является высокий уровень SCORE (>5%). Так, SCORE >5% повышает риск развития события в 1,8 раза (ОШ 1,832, 95% ДИ 1, 102–6, 285, p=0,036).

Кокс анализ показал, что значимыми предикторами риска развития ИБС являются уровень обеспеченности, SCORE, ЛНП и нарушенная гликемия натощак. Низкий уровень обеспеченности значительно снижал вероятность события (ОШ = 0,028, 95% ДИ 0,002–0,414, p=0,009). Высокий показатель SCORE повышал риск более чем в 43 раза (ОШ = 43,101, 95% ДИ 2,811–660,854, p=0,007), а уровень ЛНП увеличивал риск в 55 раз (ОШ = 55,748, 95% ДИ 3,123–995,263, p=0,006). Нарушенная гликемия натощак также снижала риск события (ОШ = 0,071, 95% ДИ 0,008–0,638, p=0,018). Остальные факторы, включая образование, работу, семейное положение, стресс, тревогу, депрессию, ТГ, фибриноген и ГГТ, не показали статистически значимой связи с риском, при этом тревога (ОШ = 6,551, 95% ДИ 0,720–59,587, p=0,095) и депрессия (ОШ = 4,821, 95% ДИ 0,819–28,374, p=0,082) демонстрировали тенденцию к влиянию на риск развития ИБС, но не достигли статистической значимости.

Для объективного сравнения КТ в обеих группах была выполнена псевдорандомизация методом propensity score matching (PSM) по полу и возрасту, в результате которой были получены две группы, каждая из 186 пациентов (в обеих группах возраст 47,0 лет, Q1-Q3:41,0–54,0, 50% женщин). Этот метод позволил минимизировать возможные искажения, связанные с различиями в демографических характеристиках участников, обеспечив более точное сравнение клинических исходов.

Анализ зависимости клинических исходов от групп A и Б показал отсутствие статистически значимых различий в частоте случаев ККТ, фатальных сердечнососудистых исходов, ИМ, инсультов, ИБС и ХСН (Таблица 27).

Таблица 27 – Сравнение частоты конечных точек между группами А и	1 Б
--	-----

Конечная точка	Группа				
	Группа А %	Группа Б %	Р		
Смерть от ССС	1,6	3,2	0,502		
ИМ	2,7	3,2	1,000		
Инсульт	3,2	1,6	0,502		
ИБС	6,5	4,8	0,500		
XCH	2,7	2,2	1,000		
KKT	16,7	15,1	0,670		

Для ККТ шансы в группе Б были практически одинаковы по сравнению с группой А (ОШ = 0.886, 95% ДИ: 0.508-1.547, p=0.670) (Рисунок 40).

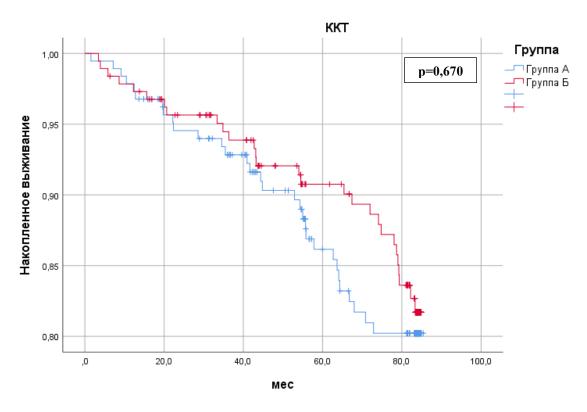


Рисунок 40 – Кривая Каплан-Мейер для анализа ККТ в зависимости от группы

Для смертельных ССС в группе А шансы были выше в 2,033 раза, однако статистической значимости это различие не достигло. (ОШ = 2,033, 95% ДИ: 0,501–8,255, p=0,502) (Рисунок 41).

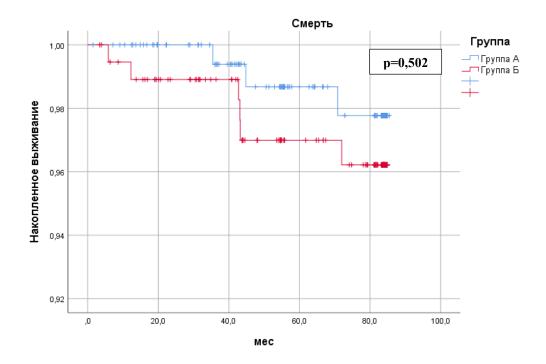


Рисунок 41 — Кривая Каплан-Мейер для анализа выживаемости в зависимости от группы

Для ИМ шансы в группе Б оказались выше в 1,207 раза (ОШ = 1,207, 95% ДИ: 0,362–4,025, p=1,000), а для инсульта ниже в 2,033 раза (ОШ = 0,492, 95% ДИ: 0,121–1,997, p=0,502). (Рисунок 42.1, 42.2).

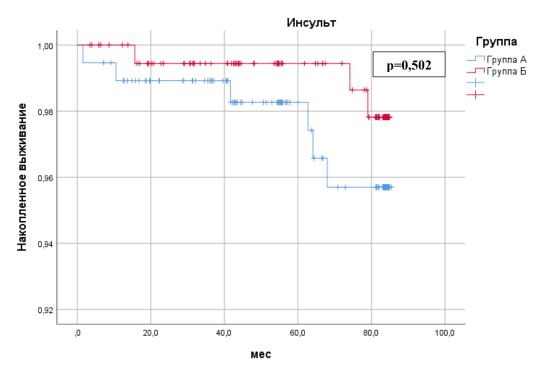


Рисунок 42.1 — Кривая Каплан-Мейер для анализа инсультов в зависимости от группы

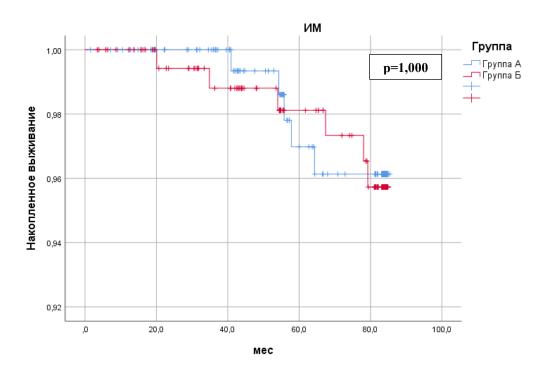


Рисунок 42.2 – Кривая Каплан-Мейер для анализа ИМ в зависимости от группы

Для ХСН шансы в группе Б были ниже в 1,257 раза (ОШ = 0,796, 95% ДИ: 0,210–3,011, p=1,000), а для ИБС – ниже в 1,356 раза (ОШ = 0,737, 95% ДИ: 0,303–1,794, p=0,500) (Рисунок 43.1, 43.2). Все различия шансов между группами не достигли статистической значимости (p> 0,05), что свидетельствует об отсутствии значимого влияния групп на указанные клинические исходы.

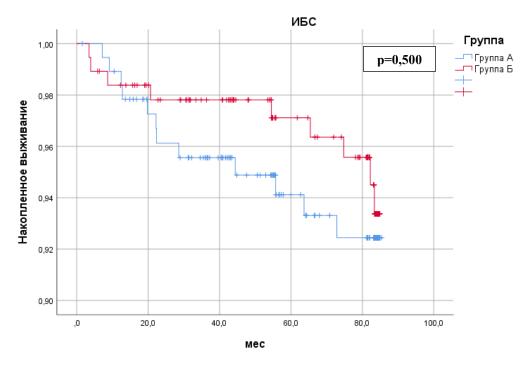


Рисунок 43.1 – Кривая Каплан-Мейер для анализа ИБС в зависимости от группы

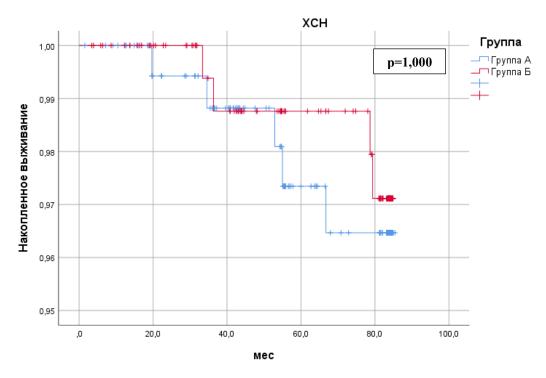


Рисунок 43.2 – Кривая Каплан-Мейер для анализа ИБС и XCH в зависимости от группы

Δvi

Таким образом, на основании проведенного анализа у лиц с ГБ и с ПОфАД за 85 месяцев, выявлены ключевые ФР, влияющие на развитие неблагоприятных событий, такие как SCORE> 5%, уровень ЛНП >3,0 ммоль/л, Hb_{Alc} >6.5% и социально-экономический статус. При этом протективными факторами выступили наличие работы и высокий уровень обеспеченности.

Сравнение между группами А и Б не выявило статистически значимых различий в частоте случаев смерти, ИМ, инсульта, ИБС и ХСН через 7 лет. Хотя наблюдались некоторые различия в показателях выживаемости, они не достигли статистической значимости. Полученные данные демонстрируют, что при 7-летнем наблюдении у лиц с установленным фактом ПОфАД с такой же частотой развиваются выше изученные КТ, что и у больных, имеющих в анамнезе диагноз ГБ, что диктует необходимость более ранней диагностики ГБ с оценкой ФР для планировании профилактических мероприятий, лечения.

ГЛАВА 8. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ

Несмотря на наличие хорошо изученных и доказанных мер первичной профилактики, а также эффективных подходов к лекарственной терапии, подтверждённых многочисленными рандомизированными исследованиями, АГ продолжает оставаться одной из ведущих причин смертности как в мире, так и в России. ВОЗ неизменно относит гипертонию к числу причин заболеваемости и смертности № 1 во всем мире [71].

ФР ССЗ играют ключевую роль в развитии и прогрессировании АГ, влияя на структуру и функцию сосудистой системы, а также на общее состояние здоровья человека. АГ представляет собой мультифакториальный патологический процесс, в котором каждый из ФР может оказывать значительное влияние. Это требует комплексного подхода как к профилактике, так и к лечению данного заболевания. является подчеркнуть, что важным аспектом территориальная неоднородность распространённости АГ и ФР ССЗ в России. В зависимости от региона наблюдаются значительные различия в структуре ФР, что обусловлено социально-экономическими, климатическими и культурными особенностями [39, 23]. Указанные региональные особенности требуют детального изучения и анализа, что особенно актуально для разработки целенаправленных профилактических программ.

Помимо традиционных ФР, важную роль в оценке состояния пациентов с АГ играют современные инструментальные методы обследования, включая ЭхоКГ и УЗИ сосудов. С момента публикации российских клинических рекомендаций по диагностике и лечению АГ в 2010 г. роль ЭхоКГ в выявлении поражений сердца и оценке прогноза значительно возросла [62]. Кроме того, актуальные клинические рекомендации последних лет, как европейские, так и российские, также подчёркивают высокую информативность неинвазивного УЗИ СА и БА. Этот метод позволяет эффективно стратифицировать ССР независимо от возраста пациента и других ФР [20, 68].

Для оценки ССР были разработаны различные шкалы, каждая из которых

имеет свои особенности и область применения. Одними из наиболее широко используемых международнопризнанных и утвержденных в РФ являются шкалы SCORE и SCORE2, последняя из которых вошла в новые КР МЗ РФ по АГ и становится применимой в практике с 01.01.2025 г. Например, важность расчета риска по шкале SCORE2, показывает, что количество пациентов в возрасте 40-64 лет с показаниями для гиполипидемической терапии в рамках первичной профилактики увеличивается в 14 раз [43].

Несмотря на существующие методы оценки ФР и доступные подходы к терапии, динамика смертности от АГ в регионах России за период с 2013 по 2019 гг. остаётся неоднородной. Хотя в целом за этот период стандартизованный коэффициент смертности от АГ снизился в 1,7 раза, сохраняются существенные региональные различия. В ряде регионов наблюдаются волнообразные изменения показателей смертности, что требует дополнительного анализа [55].

Для решения поставленных задач, из всех обследованных в ЭССЕ-РФ2 (РО), в возрасте от 25 до 64 лет (1632 человек), в исследование включено 713 обследованных с АД выше 140/90 мм рт.ст. при двухкратном измерении, или принимающих антигипертензивные препараты, которые были разделены на 2 группы: группа А – больные с установленным диагнозом ГБ, принимающие как минимум один антигипертензивный препарат (467 человек, 62,7% женщин, медиана возраста 52,0 лет, [Q1-Q3: 30,0-44,0 года]), и группа Б - исследуемые с ГБ ПОфАД, установленного диагноза И не принимающие антигипертензивные препараты (246 человек, 41,1% женщин, медиана возраста 44,0 года, [Q1-Q3: 32,0-45,0 год]). Критериями включения были возраст от 25 до 64 лет и подтверждённый диагноз ГБ при условии приёма по меньшей мере одного антигипертензивного препарата или АД выше или равно 140/90 мм рт.ст. при двухкратном измерении, подписание формы добровольного информированного согласия на участие в исследовании. Критериями исключения были наличие у исследуемых ИБС, ИМ, инсультов или преходящих нарушений мозгового кровообращения, а также СД, согласно данным, указанным в медицинских картах или заполненных пациентами анкетах, а также прием липидснижающей терапии.

Все участники исследования прошли анкетирование, в ходе которого собиралась информация o демографических И социально-экономических характеристиках: пол, возраст, дата рождения, семейное положение, уровень образования, трудовая занятость, наличие инвалидности, курение, частота употребления экономические условия. Для алкоголя И оценки психоэмоционального состояния использовалась Шкала воспринимаемого стресса (Perceived Stress Scale, PSS), а уровни тревоги и депрессии определялись с помощью Госпитальной шкалы тревоги и депрессии (Hospital Anxiety and Depression Scale, HADS). Кроме того, фиксировались данные о наличии сопутствующих заболеваний и применяемой терапии.

Проводились общеклинические исследования, включающие двукратное измерение АД, определение ЧСС, измерение роста, МТ и расчет ИМТ. В рамках лабораторных исследований анализировались уровни ОХС, ЛНП, ЛВП, ТГ, глюкозы плазмы натощак, HbA1c, общего билирубина, креатинина, ГГТ, ЩФ, АСТ, АЛТ и фибриногена. ЭхоКГ было выполнено у 60 человек (по 30 участников в каждой группе), а УЗИ СА и БА – у 40 человек.

Комплексная оценка риска фатальных ССС проводилась с использованием адаптированной шкалы SCORE, разработанной для РФ. Для участников старше 40 лет дополнительно рассчитывался риск фатальных и нефатальных ССС с использованием шкалы SCORE2, предназначенной для стран с очень высоким уровнем ССР. У всех пациентов, получавших антигипертензивную терапию, была проведена оценка качества лечения и приверженности к терапии с использованием шкалы комплаентности Мориски-Грина.

Сбор данных по КТ (смерть от ССЗ, ИМ, ИБС, инсульт, ХСН) осуществлялся в 2019, 2021, 2023 и 2024 гг.

При анализе липидного обмена было выявлено, что дислипидемия присутствует у почти 90% участников исследования, без значимых различий между группами: в группе A - 86,1%, в группе B - 85,8%. Гиперхолестеринемия наблюдалась у 65,2% обследованных. Повышенный уровень ЛНП отмечен у 82,6% участников, а гипертриглицеридемия — у 37,7%. Снижение уровня ЛВП (<1,0)

ммоль/л) встречалось реже: 6,4% в группе А и 7,3% в группе Б.

При оценке медиан липидного обмена в общей группе выявлено, что медианное значение ОХС превышает 5 ммоль/л. Медиана уровня ЛНП также превысила 3 ммоль/л. Уровень ЛВП имел медианное значение 1,4 ммоль/л с широким диапазоном значений. Медиана ТГ составила 1,42 ммоль/л, при этом у отдельных участников наблюдались значительно более высокие значения.

Сравнительный анализ ФР у пациентов с диагнозом ГБ, принимающих как минимум один антигипертензивный препарат, и у обследуемых с повышенным АД, но без установленного диагноза АГ и не принимающих антигипертензивные препараты, показал, что по липидному спектру (ОХС, ЛВП, ТГ, ЛНП) статистически значимых различий не выявлено ни по средним значениям, ни по частоте встречаемости.

Сопоставление наших результатов с данными исследования, проведённого Чазовой И. Е. с соавт. (2014 г.) в 10 городах РФ у пациентов с АГ, показало сопоставимые средние уровни ОХС, ЛНП и ТГ. При этом частота нарушений липидного обмена в указанной работе авторами не анализировалась [52]. Сравнение показателей липидного обмена нашего исследования с данными проектов ЭССЕ-РФ и ЭССЕ-РФ 3 [46] в популяции населения показало, что выявленная гиперхолестеринемия у 54,9% и 59,7% обследованных соответственно оказалась ниже, чем в нашей работе. Это может быть связано с наличием повышенного АД и гипертонии у пациентов обеих исследуемых нами групп.

В общей группе нарушения углеводного обмена выявлены у трети участников, из них у 6,5% уровень глюкозы натощак составил ≥ 7 ммоль/л. Медиана глюкозы натощак и HbA1c составила 5,3 ммоль/л и 5,3% соответственно.

В сравнении групп A и Б выявлены статистически значимые различия: глюкоза натощак – 5,40 ммоль/л [Q1-Q3: 4,90- 5,90 ммоль/л] в группе A против 5,30 ммоль/л [Q1-Q3: 4,90- 5,60 ммоль/л] в группе Б (p=0,009), НьА1с – 5,40% [Q1-Q3: 5,10- 5,60%] против 5,20% [Q1-Q3: 5,00- 5,4] (p<0,001). Нарушения углеводного обмена чаще встречались в группе A (40,7%) по сравнению с группой Б (36,5%; p=0,004): в группе A нарушение гликемии натощак выявлено у 30,4%, уровень

глюкозы ≥ 7 ммоль/л — у 10,3%; в группе Б — у 31,3% и 3,3% соответственно. Установленные нами нарушения углеводного обмена во многом сходны с данными российского исследования NATION, проведенном также у больных АГ, в котором у 38,2% обследуемых был выявлен преддиабет, а у 14,7% обследуемых установлен впервые СД 2 типа [49]. При этом наши результаты оказались выше, чем в общепопуляционных исследованиях, проведенных на 1603 жителях Красноярского края, где 31,6% имели уровень гликемии натощак \geq 5,6 ммоль/л [48], и в Кемерово, где только у 23,9% исследуемых наблюдалось нарушение углеводного обмена [14], что может объясняться региональными особенностями РО.

ЧСС более 80 уд/мин достаточно часто встречается среди пациентов с АГ и составляет около 30% [27], что соответствует нашим результатам (25,1% в группе А и 37,4% в группе Б), также как и медиана в группах А и Б составила 73,0 и 76,0 уд/мин соответственно и была сопоставима с результатами российской программы ДОКАЗАТЕЛЬСТВО, в которой у больных с АГ средняя ЧСС составила 74,6±9,3 уд/мин [28].

По данным ЭССЕ-РФ распространенность ожирения в РФ в 2018 г. составила 26,9% у мужчин и 30,8% среди женщин [38], что оказалось ниже, чем в нашем исследовании, что может быть объяснено наличием АГ, которая сопровождается повышением частоты ожирения [38].

По данным ЭССЕ-РФ 3, проведенным в 15 регионах РФ у пациентов с АГ, получающих и не получающих эффективное лечение, распространенность избыточной МТ составила 34,7% и 33,2% у женщин и 46,7 % и 43,0% у мужчин соответственно, а частота ожирения 23,5% и 18,8% у эффективно- и 51,1% и 40,2% у неэффективно леченных мужчин и женщин соответственно [39]. Данные результаты у больных с АГ во многом согласуются с нашим исследованием, в котором частота ожирения в группах А и Б составила 51,4% и 41,9%.

В одном из последних крупных исследований у пациентов с АГ в РФ частота курения составила 45,2% у мужчин и 3,8% у женщин [17]. Полученные нами результаты установили более высокую распространенность курения у женщин (14,5%), что указывает на региональную особенность данного ФР. Следует

отметить, что медианный возраст курящих был статистически значимо ниже по сравнению с некурящими: 44,0 года [Q1–Q3: 37,0–53,0 года] у курящих и 52,0 года [Q1–Q3: 43,0–58,0 года] у некурящих (р <0,001). Этот результат подчеркивает важность профилактических мер и программ борьбы с курением, особенно среди молодежи.

Общая распространенность субклинического и клинического уровней тревоги и депрессии в исследовании ЭССЕ РФ составила 46,3% и 25,6% соответственно [58], а в исследовании ЭССЕ РФ3, проведенном немного позже в других 15 регионах РФ, данные показатели были ниже и составили уже 26,1% и 20,5% соответственно [50], что ближе к полученным нами результатам (28,9% и 22,8% соответственно). Такие различия в распространенности тревоги и депрессии по нашим данным по сравнению с общероссийскими могут быть объяснены региональными особенностями РО.

Такими образом, в нашем исследовании у больных с установленным диагнозом ГБ, принимающих как минимум один антигипертензивный препарат и обследуемых с ПОфАД, но без установленного диагноза ГБ и не принимающих антигипертензивные препараты, установлена высокая распространенность дислипидемии (86,1% и 85,6%), избыточной МТ/ожирения (86,1% и 83,4%), умеренная распространенность нарушений углеводного обмена (40,7% и 36,5%), при небольшой распространенности повышенной ЧСС (25,1% и 37,4%). При этом обращает на себя внимание, что обследуемые с ПОфАД, но без установленного диагноза ГБ и не принимающие антигипертензивные препараты, имеют более высокую частоту курения и увеличения ЧСС. Существующие методические рекомендации по диспансерному наблюдению пациентов с АГ предполагают проведение анализа липидного обмена и оценку ожирения один раз в год [36]. Однако высокая распространённость факторов риска у данной категории пациентов указывает на необходимость более частого проведения таких обследований, с дополнением показателей углеводного обмена не только у пациентов с подтверждённым диагнозом АГ, но и у лиц с однократным эпизодом ПОфАД.

ЭхоКГ, выполненное у 60 пациентов (средний возраст 48.3 ± 10.1 лет, 50% женщин) показало увеличение размеров ЛП у 53.3% пациентов. Эти результаты могут быть объяснены тем, что даже легкая гипертензия приводит к снижению раннего диастолического наполнения, что вызывает усиленное позднее диастолическое наполнение ЛЖ за счет активного сокращения предсердий и может быть механизмом увеличения размера ЛП [146]. Кроме того, в исследовании 100 пациентов с $A\Gamma$ и 50 нормотензивных субъектов контрольной группы, сопоставимых по возрасту и полу, выявлены статистически значимо более высокие размеры 3СЛЖ у пациентов с $A\Gamma$ [78].

Сравнение групп А и Б показало значимо более низкий КСР в группе Б (p=0,046) и более низкую ФВ в группе А (p=0,011). Также у 6,7% обнаружены впервые зоны гипо- или акинезии. Корреляционный анализ выявил связь повышенного ИМТ и окружности талии с рядом параметров ЭхоКГ, включая АО, ЛП и КСР (p<0,05). Результаты исследования показали, что повышенный ИМТ и окружность талии являются индикаторами висцерального ожирения и МС, что приводит к гипертрофии миокарда и дилатации камер сердца [194].

Поражение экстракоронарных сосудов является одной из основных причин осложнений при АГ, однако существует относительно мало информации о клинически бессимптомной фазе их развития, происходящей за многие годы до появления симптомов. УЗИ СА у 40 пациентов (медиана возраста 51 год, 50% женщин) показало, что ТИМ находилась в пределах нормы, но у 7,5% и 10% пациентов её значение превышало 0,9 мм в правой и левой СА соответственно. АСБ выявлены у 50% пациентов, преимущественно в бифуркациях общих СА (42,9% в правой и 38,1% в левой). Корреляционный анализ показал положительную связь возраста с ТИМ правой (r = 0,568, p < 0,001) и левой СА (r = 0,543, p < 0,001), а также с количеством АСБ (r = 0,577, p < 0,001). Значимая отрицательная корреляция отмечена между ЛВП и ТИМ левой СА (r = -0,319, p = 0,045). НbА1с положительно коррелировал с ТИМ правой (r = 0,322, p = 0,043) и левой СА (r = 0,332, p = 0,037).

Наши результаты несколько ниже, чем в исследовании у мужчин с АГ в Ямало-Ненецком автономном округе, где АСБ выявлялись у 56,1%, а ТИМ более

0,9 мм — у 17,7%. Средняя ТИМ в этом исследовании составила 0,93 ± 0,34 мм. разница между нашими результатами и результатами данного исследования, вероятно, обусловлена исключением пациентов с ИБС из нашей выборки [42]. Однако наши данные в три раза превышают результаты исследования, проведённого в Турции у пациентов с гипертензией, дислипидемией или курением, где АСБ были выявлены лишь у 17,2% обследованных [179]. Это подтверждает достаточно высокую распространённость бессимптомных АСБ в РО и подчёркивает необходимость скрининга с помощью УЗИ сосудов у пациентов с ГБ.

Кроме того, УЗИ БА показало нормальные значения ТИМ в общей группе (правая и левая БА: медиана 0,7 мм), тем не менее у 15% и 10% пациентов ТИМ превышала 0,9 мм в правой и левой БА соответственно. АСБ выявлены у 17,5% пациентов, преимущественно в бифуркациях общей левой БА (35,7%) и правой БА (28,6%). Наши результаты согласуются с данными исследования Rotterdam, в котором изучались характеристики атеросклероза в бедренно-подколенной артерий и его связь с сердечно-сосудистыми ФР. Было показано, распространённость атеросклероза в поверхностной БА составляет от 4% до 15%, увеличиваясь до 30% с возрастом и при наличии сердечно-сосудистых ФР, таких как АГ [180, 83]. При сравнении различных показателей ЭхоКГ и УЗИ сосудов в группах А и Б, большинство параметров оказались одинаковыми, свидетельствует об отсутствии существенных различий между этими группами. Это может указывать на схожие клинические характеристики сердечно-сосудистой системы у пациентов обеих групп, за исключением ФВ, которая составила 64,5% в группе А и 66,5% в группе Б (р=0,011). Данные различия в показателях ФВ, хотя и статистически значимы, остаются небольшими и клинически могут быть незначительными.

Таким образом, результаты исследования подчеркивают важность раннего выявления структурных изменений сердца и бессимптомного атеросклероза экстракоронарных сосудов у пациентов с АГ. Скрининг с использованием УЗИ СА и БА позволяет своевременно диагностировать начальные стадии поражения, и обоснованно назначать гиполипидемическую терапию, что особенно актуально для

регионов с высокой распространённостью АГ, таких как РО.

Оценка 10-летнего ССР по шкале SCORE показала, что 14,7% участников имели высокий или очень высокий риск (>5%). Доля лиц с высоким риском старше 40 лет по шкале SCORE2 составляла 62,0%. Мужчины и пожилые участники демонстрировали более высокие показатели риска: у мужчин риск был выше (13% против 9% по SCORE2), а средний возраст участников с высоким риском превышал 56 лет. Избыточный ИМТ значимо повышали вероятность высокого риска. Уровень образования и социально-экономический статус оказывали слабое или отсутствующее влияние на показатели риска.

Сравнивая эти результаты с данными российских исследований, таких как ЭССЕ-РФ, можно отметить схожие тенденции: мужчины старше 50 лет и курящие лица входят в группы с наибольшим риском ССЗ. [22]. Международные исследования, включая данные EUROASPIRE, подтверждают глобальную тенденцию увеличения риска с возрастом и наличием факторов, таких как гипертония и дислипидемия [201]. Большая разница между результатами по шкале SCORE и SCORE2 в нашем исследовании согласуется с данными другого исследования, охватывающего 10 199 человек в возрасте от 40 до 65 лет без установленного диагноза ССЗ, хронической болезни почек и сахарного диабета. В этом исследовании было обнаружено, что только 7,0% участников имели высокий или очень высокий риск по шкале SCORE, в то время как по шкале SCORE2 этот показатель составил 94,7% [43]. Аналогичные результаты были получены в исследовании на условно-здоровых лицах европейской этнической группы в возрасте 40-49 лет, где по шкале SCORE только 2,5% имели высокий и очень высокий риск, однако по шкале SCORE2 этот показатель достигал 89,6% [12].

Региональные данные по применению шкал SCORE и SCORE2 в России ограничены. В исследовании, проведенном в Санкт-Петербурге, на 100 здоровых пациентов оценка риска по шкале SCORE показала, что только 2% имели очень высокий риск, тогда как оценка по шкале SCORE2 показала, что все пациенты были классифицированы как имеющие высокий или очень высокий риск [40]. Эти данные подтверждают, что использование шкалы SCORE2 приводит к более

строгой классификации пациентов, повышая процент лиц, отнесенных к пациентам с высоким и очень высоким риском ССЗ. Это подчеркивает необходимость пересмотра стратегий профилактики и лечения в соответствии с обновленными рекомендациями. Таким образом, результаты нашего исследования соответствуют как российским, так и международным данным, подчеркивая необходимость усиления профилактических мер среди групп высокого риска, особенно среди мужчин старших возрастных категорий и людей с такими ФР, как избыточный вес.

Сравнение групп А и Б по ССР не выявило значимых различий. Медианный риск по шкале SCORE составил 11,0% [Q1–Q3: 6,0–16,0] в группе А и 10,0% [Q1–Q3: 6,0–16,0] в группе Б (р=0,490). Доля пациентов с высоким и очень высоким риском по шкале SCORE 2 также была схожей: 62,7% в группе А и 60,1% в группе Б (р=0,560). Шансы высокого риска в группе Б были ниже в 1,117 раза, однако это различие не достигло статистической значимости (ОШ=0,895; 95% ДИ: 0,617–1,299). Эти результаты подтверждают важность своевременного установления диагноза ГБ для раннего назначения терапии и организации диспансерного наблюдения.

монотерапия Структура антигипертензивной терапии показала, ЧТО 47,5% применялась пациентов, двухкомпонентная терапия 33,6%, трёхкомпонентная у 14,1%, а четырёхкомпонентная и более у 4,8% пациентов. Среди препаратов чаще всего использовались иАПФ (54,6%), ББ (31,8%), БРА (26,7%), диуретики (20,7%) и АКК (17,1%). Эффективность лечения выявила, что целевого уровня АД (<140/90 мм рт. ст.) достигли 33,4% пациентов, при этом женщины (38,9%) показали более высокие результаты лечения, чем мужчины (24,1%, p=0,001). Эффективность лечения снижалась с возрастом (p=0,013). Пациенты, живущие в семье, достигали целевого давления чаще (39,8%) по сравнению с одинокими (29,2%, p=0,017). Анализ приверженности лечению по 66,0% шкале Мориски-Грина показал, что пациентов имели низкую приверженность, 9,9% недостаточную, и только 24,1% высокую приверженность. Женщины показали более высокую приверженность, чем мужчины (р=0,012). Связь между шкалой Мориски-Грина и уровнем АД была слабой, но значимой: увеличение шкалы на 1 балл приводило к снижению САД на 3,62 мм рт. ст. (р <0,001).

Результаты исследования показывают, что только 33,4% пациентов достигают целевого уровня АД, что ниже международных стандартов. Например, исследования Европейского общества гипертензии указывают на 50%-й уровень контроля АД у пациентов в Европе [67]. В России, по данным федеральных регистров, целевого давления достигают около 25-30% пациентов, что сопоставимо с нашими результатами [37, 30]. Различия между мужчинами и женщинами в нашем исследовании подтверждают мировые тенденции, где женщины чаще демонстрируют более высокую приверженность к лечению [216, 136].

Низкий уровень приверженности (только 24,1% высокая приверженность) соответствует как российским, так и международным данным, где приверженность остается одной из ключевых проблем лечения гипертонии [174, 226]. В международных исследованиях низкая приверженность наблюдается у 40-50% пациентов, особенно в странах с низким и средним доходом [216]. На региональном уровне результаты могут быть хуже из-за недостаточной доступности лекарств и низкой осведомленности пациентов [226].

Таким образом, наши результаты подчеркивают необходимость разработки и внедрения более эффективных стратегий лечения АГ, а также повышения приверженности пациентов к терапии. Это требует комплексного подхода, включающего улучшение осведомлённости пациентов, доступности лекарственных препаратов и качества врачебного контроля.

В ходе 7-летнего наблюдения за 713 пациентами ККТ была зафиксирована у 16,5% участников. Среди событий: смерть от сердечно-сосудистых причин – 1,7%, ИМ – 3,9%, инсульт – 1,5%, ИБС – 6,5%, ХСН – 2,9%. Основными ФР развития ККТ являются повышенным уровнем HbA1c >6,5% и фибриногена (>4 г/л), депрессией (HADS >7), а также социально-экономическими параметрами, включая низкий уровень обеспеченности и отсутствие работы. Защитными факторами выступили наличие работы и высокий уровень обеспеченности.

Наши результаты во многом согласуются с данным исследования

EUROASPIRE V, среди больных с АГ с недостаточным контролем АД смертность от сердечно-сосудистых причин составляет 2–3% на протяжении 5 лет, а частота ИМ и инсультов достигает 5–8% и 2–3% соответственно [120].

В ходе исследования сравнивалась частота ККТ в двух группах по 186 обследованных (средний возраст 47 лет, Q1-Q3: 41-54 лет, 50% женщин). Анализ клинических исходов проведён после псевдорандомизации методом propensity score matching (PSM) по полу и возрасту. Результаты показали отсутствие статистически значимых различий между группами А и Б по неблагоприятных событий: смерти от ССС, ИМ, инсульта, ИБС, ХСН и ККТ (р> показателей). Полученные 0.05 всех результаты согласуются с международными исследованиями, где при длительном наблюдении влияние некоторых терапевтических стратегий на исходы нивелируется [119]. В России результаты сопоставимы с данными Национального регистра по ИБС, которые также указывают на роль ΦP , таких как уровень ЛНП >3,0 ммоль/л и SCORE >5%, как ключевых предикторов неблагоприятных событий [25]. На региональном уровне социально-экономические факторы играют значительную роль: наличие работы и высокий уровень обеспеченности выступили защитными факторами, что подтверждается данными отечественных исследований [10]. В международных исследованиях, таких как PURE (Prospective Urban Rural Epidemiology), социальный статус и доступ к медицинской помощи также признаны важными факторами для улучшения исходов у пациентов [172].

Таким образом, результаты подчёркивают необходимость сосредоточения усилий на управлении факторами риска и улучшении социально-экономических условий, а также своевременного установления диагноза ГБ для раннего назначения терапии и организации диспансерного наблюдения с целью снижения частоты неблагоприятных исходов в популяции населения РО. Дальнейшее наблюдение позволит более точно оценить долгосрочные эффекты проводимых вмешательств и влияние факторов риска на прогноз.

ЗАКЛЮЧЕНИЕ

Проведённое исследование на основе данных 7-летнего наблюдения за пациентами с ГБ и однократным ПОфАД в популяции РО позволило выявить ключевые аспекты состояния сердечно-сосудистой системы и факторов риска, требующих особого внимания. Установлено высокая распространённость дислипидемии (86,0%), гиперхолестеринемии (65,2%), нарушений углеводного обмена (38,6%), избыточного веса и ожирения (85,1%), а также курения (26,5%). Психоэмоциональные нарушения были наиболее выражены у женщин, одиноких людей и лиц с низким уровнем образования, что подчёркивает значимость социально-демографических факторов в управлении рисками. Научная новизна работы заключается в установлении статистически значимой связи между метаболическими нарушениями, структурными изменениями сердца и сосудов, а также их влиянием на ССР. Полученные данные, таким образом, подтвердили необходимость применения современных инструментов оценки риска, таких как SCORE2, и использования ультразвуковых методов диагностики.

Особое внимание в работе уделено низкой приверженности пациентов антигипертензивной терапии, что остаётся одной из ключевых проблем. Несмотря на значительное улучшение охвата терапией в РО, контроль артериального давления достигнут у менее половины пациентов. Это, в свою очередь, свидетельствует о необходимости активной образовательной и профилактической работы с населением для повышения эффективности лечения.

В ходе 7-летнего наблюдения у 16,5% обследованных была зафиксирована комбинированная конечная точка, включая случаи смерти от ССС, ИМ, инсультов, ИБС и ХСН. Основными факторами риска неблагоприятных событий стали повышенный уровень HbA1c (>6,5%), фибриноген (>4 г/л), а также депрессия. Протективными факторами выступали наличие работы и материальная обеспеченность, что подчёркивает значимость социально-экономического статуса для прогноза. Следует также отметить, что неблагоприятные клинические исходы существенно не различаются между пациентами с ГБ и лицами с однократным

ПОфАД без диагноза ГБ. Таким образом, становится очевидной важность ранней диагностики и стратификации риска, особенно у пациентов с ПОфАД, которые часто не получают необходимого лечения.

Практическое значение исследования заключается в разработке комплексных подходов к лечению и профилактике, направленных на снижение ССР в регионе. Соответственно, результаты могут быть использованы для оптимизации медицинской помощи, внедрения скрининговых программ и совершенствования рекомендаций по антигипертензивной терапии. Важно отметить, что подтверждено значительное влияние социальных и психоэмоциональных факторов на риск сердечно-сосудистых осложнений, что, в свою очередь, требует интеграции психологической поддержки в программы лечения.

В результате представленная работа вносит значимый вклад в понимание факторов, влияющих на исходы при ГБ и однократным ПОфАД. Это даёт основу для разработки регионально адаптированных стратегий управления сердечнососудистым риском, что является важным шагом для улучшения здоровья населения и снижения числа неблагоприятных исходов.

ВЫВОДЫ

1. У всех обследованных с артериальной гипертензией выявлена высокая распространённость дислипидемии (86,0%), гиперхолестеринемии (65,2%), повышенного уровня липопротеинов низкой плотности (82,6%), нарушений углеводного обмена (38,6%), избыточного веса и ожирения (85,1%), а также курения (26,5%). Психоэмоциональные нарушения (стресс, тревожность, депрессия) были более выражены у женщин, одиноких людей и лиц с низким уровнем образования (р <0.05 для всех показателей).

У пациентов с установленным диагнозом гипертонической болезни показатели углеводного обмена, индекс массы тела и выраженность психоэмоциональных нарушений оказались статистически значимо выше, чем у обследованных с повышенным офисным артериальным давлением без установленного диагноза артериальной гипертонии.

2. Установленные при эхокардиографическом исследовании увеличение левого предсердия (более 3,6 см) у 53,3% обследованных с артериальной гипертензией, а также увеличение размеров аорты, межжелудочковой перегородки и утолщение задней стенки левого желудочка (более выраженное у мужчин) положительно коррелировали с индексом массы тела, окружностью талии и уровнем триглицеридов. Кроме того, в группе обследованных с подтверждённым диагнозом гипертонической болезни отмечалось значимое увеличение конечного систолического размера левого желудочка.

Ультразвуковое исследование сонных артерий у обследованных с АГ выявило наличие атеросклеротических бляшек у 50,0% обследованных, а толщина интима-медиа превышала 0,9 мм у 7,5% и 10% в правой и левой сонных артериях соответственно. Возраст положительно коррелировал с толщиной интима-медиа и количеством атеросклеротических бляшек, тогда как уровень липопротеинов высокой плотности был отрицательно связан с толщиной интима-медиа левой сонной артерий.

Ультразвуковое исследование бедренных артерий у обследованных АГ показало, что толщина интима-медиа превышала 0,9 мм у 15% и 10% в правой и левой бедренных артериях соответственно, а атеросклеротические бляшки обнаружены у 17,5% пациентов, преимущественно в зоне бифуркаций общих бедренных артерий. Возраст положительно коррелировал с толщиной интимамедиа, а окружность бедер — со стенозом в бедренном бассейне.

Статистически значимых различий между показателями в группах ГБ и ПОфАД по основным параметрам УЗИ СА и БА не выявлено.

3. Оценка сердечно-сосудистого риска по шкале SCORE показала, что высокий и очень высокий риск выявлен у 14,7% всех обследованных с артериальной гипертензией. Установлены дополнительные факторы увеличения сердечно-сосудистого риска, включая индекс массы тела, окружность талии, уровень диастолического артериального давления, глюкозы и гликированного гемоглобина.

По шкале SCORE2 высокий риск сердечно-сосудистых событий отмечен у 62,0% обследованных в возрасте 40-64 года. Риск возрастал с увеличением уровня диастолического артериального давления, окружности талии, а также показателей глюкозы и гликированного гемоглобина. Частота высокого риска по шкале SCORE2 статистически значимо не различалась между группами с гипертонической болезнью и повышенным офисным артериальным давлением (62,7% и 60,1% соответственно, p=0,560).

4. Низкая частота достижения целевого уровня артериального давления (33,4%) у пациентов с гипертонической болезнью в Рязанском регионе может быть связана с частым использованием монотерапии (47,5%) и низкой приверженностью к лечению (только 24,1% обследуемых имели высокую приверженность). Эффективность контроля артериального давления снижалась с возрастом (р =0,013) и была выше у пациентов, проживающих в семье, по сравнению с пациентами проживающими отдельно (39,8% и 29,2% соответственно, p=0,017). Взаимосвязь приверженности к лечению с социально-экономическими и психоэмоциональными факторами не установлена.

5. В ходе 7-летнего наблюдения у всех обследованных комбинированная конечная точка была зафиксирована у 16,5% участников, включая 1,7% случаев смерти от сердечно-сосудистых заболеваний, 3,9% инфаркта миокарда, 1,5% инсультов, 6,5% случаев ишемической болезни сердца и 2,9% хронической сердечной недостаточности.

Установлены основные факторы риска, повышающие вероятность неблагоприятных событий: SCORE >5% (ОШ 2,567; р <0,001), НbA1c >6,5% (ОШ 3,167; р <0,001), фибриноген >4 г/л (ОШ 1,907; р = 0,002) и депрессия (HADS >7) (ОШ 1,798; р = 0,003). Протективными факторами являлись наличие работы (ОШ 0,362; р <0,001) и средний или высокий уровень материальной обеспеченности (ОШ 0,454; р <0,001).

Статистически значимых различий в частоте комбинированных конечных точек, смертности, инфаркта миокарда, инсультов, ишемической болезни сердца и хронической сердечной недостаточности между пациентами с гипертонической болезнью и обследуемыми с ПОфАД после псевдорандомизации методом PSM выявлено не было.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. При ведении пациентов с артериальной гипертензией рекомендуется регулярно, каждые 6 месяцев, мониторировать показатели липидного и углеводного обмена, а также определять индекс массы тела. Дополнительно к рекомендациям по диспансерному наблюдению следует оценивать уровень стресса и тревожности. Лицам с эпизодическим, однократным повышением офисного артериального давления рекомендуется 2 раза в год измерять артериальное давление и мониторировать метаболические показатели с целью выявления факторов риска и своевременной диагностики гипертонической болезни.
- 2. Наличие одинаковой частоты встречаемости увеличения толщины комплекса интима-медиа и атеросклеротических бляшек в сонных и бедренных артериях у пациентов с диагнозом гипертонической болезни и с повышенным офисным артериальным давлением обосновывает рекомендацию раннего скринингового ультразвукового исследования сонных и бедренных артерий у лиц без диагноза гипертонической болезни, но с наличием факторов риска.
- 3. При оценке сердечно-сосудистого риска по шкале SCORE2 следует дополнительно оценивать уровни диастолического артериального давления, окружность талии и показатели углеводного обмена, которые повышают сердечно-сосудистый риск.
- 4. При оценке приверженности к антигипертензивной терапии следует уделять особое внимание семейному положению, которое оказывает значимое влияние на контроль артериального давления и приверженность к лечению.

СПИСОК СОКРАЩЕНИЙ

АГ – артериальная гипертензия

АД – артериальное давление

АК – аортальный клапан

АКК – антагонисты кальциевых каналов

АЛТ – аланинаминотрансфераза

АО – аорта

АСБ – атеросклеротическая бляшка

АСТ – аспартатаминотрансфераза

БА – бедренная артерия

ББ – бета-блокаторы

БРА – блокаторы рецепторов ангиотензина II

BNP – натрийуретический пептид

ВОЗ – всемирная организация здравоохранения

ГБ – гипертоническая болезнь

ГГТ – гамма-глутамилтрансфераза

ГЛЖ – гипертрофия левого желудочка

ДАД – диастолическое артериальное давление

ДГЭА – дигидроэпиандростерона

ДИ – доверительный интервал

иАПФ – ингибиторы ангиотензинпревращающего фермента

ИБС – ишемическая болезнь сердца

ИМ – инфаркт миокарда

ИМТ – индекс массы тела

КДР – конечный диастолический размер

ККТ – комбинированная конечная точка

КСР – конечный систолический размер

КТ – конечная точка

ЛВП – липопротеины высокой плотности

ЛЖ – левый желудочек

ЛНП – липопротеины низкой плотности

ЛП – левое предсердии

МК – митральный клапан

МС – метаболический синдром

МТ – масса тела

Не-ЛВП – холестерин, не относящийся к липопротеинам высокой плотности

ОХС – общий холестерин

ОШ – отношение шансов

ПЗР – переднезадний размер

ПОфАД – повышенное офисное АД

ПП – правое предсердие

РО – Рязанская область

РФ – Российская Федерация

СА – сонная артерия

САД – систолическое артериальное давление

СД – сахарный диабет

СРБ – с-реактивный белок

ССЗ – сердечно-сосудистые заболевания

ССР – сердечно-сосудистый риск

ССС – сердечно-сосудистая события

ТГ – триглицериды

ТЗСЛЖ – толщина задней стенки левого желудочка

ТИМ – толщина интима-медиа

ТК – трикуспидальный клапан

ТМЖП – толщина межжелудочковой перегородки

УЗИ – ультразвуковое исследование

ФВ – фракция выброса

 $\Phi P - \varphi$ акторы риска

ХНИЗ – хронические неинфекционные заболевания

ХСН – хроническая сердечная недостаточность

ЧСС – частота сердечных сокращений

ЩФ – щелочная фосфатаза

ЭССЕ-РФ – эпидемиологическое исследование состояния здоровья и факторов риска в Российской Федерации

ЭхоКГ – эхокардиография

HbA1c – гликированный гемоглобин

SCORE – Systematic Coronary Risk Evaluation (систематическая оценка коронарного риска)

СПИСОК ЛИТЕРАТУРЫ

- 1. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / И. И. Дедова, М. В. Шестаковой, А. Ю. Майорова, [и др.]. Текст: непосредственный // Сахарный диабет. 2019. Т. 22, № 1S. DOI: 10.14341/DM221S1.
- 2. Алфёрова, В. И. Распространенность ожирения во взрослой популяции Российской Федерации (обзор литературы) / В. И. Алфёрова, С. В. Мустафина. Текст: непосредственный // Ожирение и метаболизм. 2022. Т. 19, № 1. С. 96–105. DOI: 10.14341/omet12809.
- 3. Анализ распространенности показателей, характеризующих атерогенность спектра липопротеинов, у жителей Российской Федерации / В. А. Метельская, С. А. Шальнова, А. Д. Деев [и др.]. Текст: непосредственный // Профилактическая медицина. 2016. Т. 19, № 1. С. 15–23. DOI: 10.17116/201619115-23. EDN: VSEPLP.
- 4. Андрюшенко, А. В. Сравнительная оценка шкал CES-D, BDI и HADS(d) в диагностике депрессий в общей медицинской практике / А. В. Андрюшенко, М. Ю. Дробижев, А. В. Добровольский. Текст : непосредственный // Журнал неврологии и психиатрии. 2003. № 5. С. 11–17.
- 5. Артериальная гипертензия у взрослых. Клинические рекомендации 2020 / Ж. Д. Кобалава, А. О. Конради, С. В. Недогода, [и др.]. Текст : непосредственный // Российский кардиологический журнал 2020. Т. 25, № 3. С. 149—218. DOI: 10.15829/1560-4071-2020-3-3786.
- 6. Артериальная гипертония в Рязанской области: данные третьего среза исследования ЭПОХА / Е. А. Смирнова, Ю. В. Тереховская, А. А. Молодцова, С. [и др.]. Текст : непосредственный // Российский кардиологический журнал. 2019. № 6. С. 49—53. DOI: 10.15829/1560-4071-2019-6-49-53.
- 7. Артериальная гипертония и риск сердечно-сосудистой смертности в городской сибирской популяции / Г. И. Симонова, Ю. П. Никитин, О. М. Глушанина [и др.]. Текст: непосредственный // Сибирский научный медицинский

- журнал. 2006. Т. 4(122). С. 88–92.
- 8. Артериальная гипертония среди лиц 25–64 лет: распространенность, осведомленность, лечение и контроль. По материалам исследования ЭССЕ / С. А. Бойцов, Ю. А. Баланова, С. А. Шальнова [и др.]. Текст: непосредственный // Кардиоваскулярная терапия и профилактика. 2014. Т. 13, № 4. С. 4—14. DOI: 10.15829/1728-8800-2014-4-4-14.
- 9. Атеросклеротическая бляшка в сонных артериях как маркер риска развития сердечно-сосудистых событий в популяции среднего возраста / А. И. Ершова, А. Н. Мешков, А. Д. Деев, [и др.]. Текст : непосредственный // Кардиоваскулярная терапия и профилактика. 2018. Т. 17, № 4. С. 34—39. DOI: 10.15829/1728-8800-2018-4-34-39.
- Бабинцева, Г. А. Социально-экономические детерминанты здоровья населения в регионах России / Г. А. Бабинцева. Текст : непосредственный // Социальные аспекты здоровья населения. 2020. Т. 66, № 1. С. 5–12.
- 11. Баланова, Ю. А. Артериальная гипертония в российской популяции в период пандемии COVID-19: гендерные различия в распространенности, лечении и его эффективности. Данные исследования ЭССЕ-РФЗ / Ю. А. Баланова, О. М. Драпкина, В. А. Куценко. Текст : непосредственный // Кардиоваскулярная терапия и профилактика. 2023. Т. 22, № 8S. С. 3785. DOI: 10.15829/1728-8800-2023-3785. EDN: YRUNUX.
- 12. Богданов, Д. Ю. Сравнительная оценка кардиоваскулярного риска у лиц европейской и корейской этнической принадлежности в российской популяции с использованием шкал SCORE и SCORE2 / Д. Ю. Богданов, В. А. Невзорова, Е. Ю. Шестопалов. Текст : непосредственный // Кардиоваскулярная терапия и профилактика. 2022. Т. 21, № 3. С. 3128. DOI: 10.15829/1728-8800-2022-3128.
- 13. Валидизация русскоязычной версии опросника "Шкала воспринимаемого стресса-10" / В. А. Абабков, К. Барышникова, О. В. Воронцова-Венгер [и др.]. Текст : непосредственный // Вестник СПбГУ. Серия 16. Психология. Педагогика. 2016. N 2. C.6-15.

- 14. Взаимосвязь нарушений углеводного обмена с инфраструктурой района проживания: эпидемиологическое исследование / Т. А. Мулерова, Т. Ф. Газиев, Е. Д. Баздырев [и др.]. Текст: непосредственный // Профилактическая медицина. 2024. Т. 27, № 2. С. 51–57. DOI: 10.17116/profmed20242702151.
- 15. Вклад артериальной гипертонии и других факторов риска в выживаемость и смертность в российской популяции / Ю. А. Баланова, С. А. Шальнова, В. А. Куценко [и др.]. Текст : непосредственный // Кардиоваскулярная терапия и профилактика. 2021. Т. 20, № 5. С. 3003. DOI: 10.15829/1728-8800-2021-3003.
- 16. Влияние артериальной гипертензии, курения и их сочетания на смертность / И. В. Долгалёв, Н. Г. Бразовская, А. Ю. Иванова [и др.]. Текст : непосредственный // Российский кардиологический журнал. 2019. № 1. С. 32— 37. DOI: 10.15829/1560-4071-2019-1-32-37.
- 17. Гендерно-возрастные особенности роли курения и сахарного диабета в развитии инфаркта миокарда у больных артериальной гипертонией / А. В. Аксенова, Е. В. Ощепкова, А. А. Орловский [и др.]. Текст : непосредственный // Системные гипертензии. 2020. Т. 17, № 4. С. 22–29. DOI: 10.26442/2075082X.2020.4.200245.
- 18. Государственный доклад «О состоянии санитарноэпидемиологического благополучия населения в Российской Федерации» Текст :
 электронный. URL:
 https://rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=27779
- 19. Дедов, И. И. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION) / И. И. Дедов, М. В. Шестакова, Г. Р. Галстян. Текст: непосредственный // Сахарный диабет. 2016. Т. 19, № 2. С. 104–112. DOI: 10.14341/DM2004116-17.
- 20. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации, VII пересмотр / В. В. Кухарчук, М. В. Ежов, И. В. Сергиенко [и др.]. Текст: непосредственный // Атеросклероз и дислипидемии. 2020. Т. 11, № 1 (38). С. 7–42. DOI:

- 10.34687/2219-8202.JAD.2020.01.0002.
- 21. Изучение влияния стресса на риск артериальной гипертензии в открытой популяции среди мужчин 25—64 лет / В. В. Гафаров, Е. А. Громова, И. В. Гагулин [и др.]. Текст : непосредственный // Артериальная гипертензия. 2013. Т. 19, № 1. С. 27—31. DOI: 10.18705/1607-419X-2013-19-1-27-31.
- 22. Информированность и особенности терапии статинами у лиц с различным сердечно-сосудистым риском: исследование ЭССЕ-РФ / С. А. Шальнова, А. Д. Деев, В. А. Метельская [и др.]. Текст : непосредственный // Кардиоваскулярная терапия и профилактика. 2016. Т. 15, № 4. С. 29–37. DOI: 10.15829/1728-8800-2016-4-29-37.
- 23. Исследование ЭССЕ-РФ (Эпидемиология сердечно-сосудистых заболеваний и их факторов риска в регионах Российской Федерации). Десять лет спустя / С. А. Бойцов, О. М. Драпкина, Е. В. Шляхто [и др.]. Текст : непосредственный // Кардиоваскулярная терапия и профилактика. 2021. Т. 20, № 5. С. 3007. DOI: 10.15829/1728-8800-2021-3007.
- 24. Кательницкая, Л. И. Суммарный сердечно-сосудистый риск у больных гипертонической болезнью: возможности ингибиторов ангиотензинпревращающего фермента / Л. И. Кательницкая, Л. А. Хаишева, С. Е. Глова. Текст: непосредственный // Рациональная фармакотерапия в кардиологии. 2007. Т. 3, \mathbb{N} 5. С. 9–14. EDN: JSAIBD.
- 25. Каширина, Н. К. Факторы риска сердечно-сосудистых заболеваний в Российской Федерации: данные Национального регистра / Н. К. Каширина. Текст : непосредственный // Кардиология. 2021. Т. 61, № 10. С. 15–22.
- 26. Клинические рекомендации. Профилактика, диагностика и лечение первичной артериальной гипертонии в Российской Федерации / В.А. Алмазов, Г.Г. Арабидзе, Ю.Б. Белоусов, [и др.]. Текст: непосредственный // // Клиническая фармакология и терапия. 2000. Т. 9, № 3. С. 5—30.
- 27. Кобалава, Ж. Д. Клинико-прогностическое значение повышенной частоты сердечных сокращений и её коррекции при артериальной гипертонии / Ж. Д. Кобалава, Г. К. Киякбаев, А. А. Шаваров. Текст: непосредственный // РМЖ.

- $-2013. N_{\odot} 27. C. 1334.$
- 28. Кобалава, Ж. Д. Комбинированная терапия артериальной гипертонии с использованием трёхкомпонентной фиксированной комбинации амлодипина, индапамида и периндоприла аргинина в клинической практике: организация и основные результаты программы ДОКАЗАТЕЛЬСТВО / Ж. Д. Кобалава, Е. А. Троицкая, В. В. Толкачева. Текст: непосредственный // Кардиология. 2018. Т. 58, № 9. С. 21–30. DOI: 10.18087/cardio.2018.9.10170.
- 29. Контролируемая и неконтролируемая артериальная гипертония: сравнение клинико-демографических характеристик пациентов / А. В. Аксенова, Е. В. Ощепкова, Е. В. Горбунова [и др.]. Текст : непосредственный // Сист. гипертензии. 2024. Т. 21, № 1. С. 15—20. DOI: 10.38109/2075-082X-2024-1-15-20.
- 30. Мартынов, А. И. Актуальные проблемы гипертонии в России / А. И. Мартынов, Г. П. Арутюнов, Д. С. Гилин. Текст : непосредственный // Российский медицинский журнал. 2020. Т. 10, № 2. С. 15–22.
- 31. Небиеридзе, Д. В. Оценка частоты поражения органов-мишеней у пациентов с артериальной гипертензией, впервые обратившихся на амбулаторный приём к врачу / Д. В. Небиеридзе, Т. В. Камышова, А. А. Сарычева. Текст : непосредственный // Фарматека. 2016. № 9(322). С. 43–47. EDN: WGCCJN.
- 32. Неблагоприятные сердечно-сосудистые исходы и их связь с факторами риска по данным проспективного исследования МЕРИДИАН-РО / Е. В. Филиппов, А. Н. Воробьев, Н. В. Добрынина [и др.]. Текст : непосредственный // Российский кардиологический журнал. 2019. \mathbb{N} 6. С. 42–48. DOI: 10.15829/1560-4071-2019-6-42-48.
- 33. Недогода, С. В. Нужен ли контроль ЧСС при лечении артериальной гипертензии? / С. В. Недогода. Текст : непосредственный // Российский кардиологический журнал. 2014. № 1. С. 107—110. DOI: 10.15829/1560-4071-2014-1-107-110.
- 34. О персональных данных : Федеральный закон Российской Федерации от 27 июля 2006 г. № 152-ФЗ— / Текст : электронный. URL:

- http://www.rg.ru/2006/07/29/personaljnyedannye-dok.html.
- 35. Об утверждении правил надлежащей клинической практики : Приказ Минздрава России от 01 апреля 2016 № 200-н // Текст : электронный. URL: http://publication.pravo.gov.ru/Document/View/0001201608240029.
- 36. Об утверждении порядка проведения диспансерного наблюдения за взрослыми: Приказ Министерства здравоохранения РФ от 15 марта 2022 г. N 168н // Текст : электронный. URL: https://base.garant.ru/404523658/
- 37. Оганов, Р. Г. Контроль артериального давления в России: результаты эпидемиологических исследований / Р. Г. Оганов, А. Д. Деев, В. Б. Лазарев. Текст : непосредственный // Российский кардиологический журнал. 2019. Т. 24, № 10. С. 45–49.
- 38. Ожирение в российской популяции распространенность и ассоциации с факторами риска хронических неинфекционных заболеваний / Ю. А. Баланова, С. А. Шальнова, А. Д. Деев [и др.]. Текст : непосредственный // Российский кардиологический журнал. 2018. № 6. С. 123—130. DOI: 10.15829/1560-4071-2018-6-123-130.
- 39. Ожирение в российской популяции в период пандемии COVID-19 и факторы, с ним ассоциированные. Данные исследования ЭССЕ-РФЗ / Ю. А. Баланова, О. М. Драпкина, В. А. Куценко [и др.]. Текст: непосредственный // Кардиоваскулярная терапия и профилактика. 2023. Т. 22, № 8S. С. 3793. DOI: 10.15829/1728-8800-2023-3793. EDN: SBUNIG.
- 40. Опыт применения шкал SCORE и SCORE2 для оценки риска сердечно-сосудистых осложнений у жителей Российской Федерации / А. В. Трегубов, А. А. Трегубова, И. В. Алексеева [и др.]. Текст: непосредственный // Атеросклероз и дислипидемии. 2022. Т. 3(48). С. 41–47. DOI: 10.34687/2219-8202.JAD.2022.03.0005.
- 41. Особенности организации эпидемиологического исследования в отдельно взятом регионе (по материалам ЭССЕ-РФ2 в Рязанской области) / Н. В. Добрынина, К. А. Мосейчук, Н. Н. Никулина [и др.]. Текст: непосредственный // Российский кардиологический журнал. 2019. Т. 24, № 6. С. 131–134. DOI:

- 10.15829/1560-4071-2019-6-131-134. EDN: IEQABR.
- 42. Повышенное артериальное давление и атеросклероз в условиях северной вахты / А. С. Ветошкин, Н. П. Шуркевич, Л. И. Гапон [и др.]. Текст : непосредственный // Артериальная гипертензия. 2018. Т. 24, № 5. С. 548—555. DOI: 10.18705/1607-419X-2018-24-5-548-555.
- 43. Потребность в назначении гиполипидемической терапии в российской популяции: сравнение шкал SCORE и SCORE2 (по данным исследования ЭССЕ-РФ) / А. М. Ерина, Д. А. Усольцев, М. А. Бояринова [и др.]. Текст : непосредственный // Российский кардиологический журнал. 2022. Т. 27, № 5. С. 5006. DOI: 10.15829/1560-4071-2022-5006. EDN: HBBGKQ.
- 44. Приверженность к лечению и контроль артериальной гипертензии в рамках российской акции скрининга МММ19 / О. П. Ротарь, К. М. Толкунова, В. Н. Солнцев [и др.]. Текст : непосредственный // Российский кардиологический журнал. 2020. Т. 25, № 3. С. 3745. DOI: 10.15829/1560-4071-2020-3-3745.
- 45. Психическое здоровье. Информационный бюллетень от 17 июня 2022. / Geneva: World Health Organization. Текст : электронный. URL: https://www.who.int/director-general/speeches/detail/launch-of-the-who-world-mental-health-report--transforming-mental-health-for-all-department-of-mental-health-and-substance-use---17-june-2022.
- 46. Распределение показателей липидного спектра у мужчин и женщин трудоспособного возраста в Российской Федерации: результаты исследования ЭССЕ-РФ за 2012—2014 гг. / А. Н. Мешков, А. И. Ершова, А. И. Деев [и др.]. Текст : непосредственный // Кардиоваскулярная терапия и профилактика. 2017. Т. 16, № 4. С. 62—67. DOI: 10.15829/1728-8800-2017-4-62-67.
- 47. Распространённость артериальной гипертонии, охват лечением и его эффективность в Российской Федерации (данные наблюдательного исследования ЭССЕ-РФ-2) / Ю. А. Баланова, С. А. Шальнова, А. Э. Имаева [и др.]. Текст : непосредственный // Рациональная фармакотерапия в кардиологии. 2019. Т. 15, № 4. С. 450–466. DOI: 10.20996/1819-6446-2019-15-4-450-466.
 - 48. Распространенность нарушений углеводного обмена и ассоциация с

- сердечно-сосудистыми заболеваниями в крупном сибирском регионе / В. В. Шабалин, Ю. И. Гринштейн, Р. Р. Руф [и др.]. Текст : непосредственный // Российский кардиологический журнал. 2022. Т. 27, № 5. С. 4992. DOI: 10.15829/1560-4071-2022-4992. EDN: GWNYPW.
- 49. Распространенность нарушений углеводного обмена у лиц с различными сочетаниями факторов риска сахарного диабета 2 типа в когорте пациентов исследования NATION / Е. А. Шестакова, Е. Ю. Лунина, Г. Р. Галстян [и др.]. Текст: непосредственный // Сахарный диабет. 2020. Т. 23, № 1. С. 4—11. DOI: 10.14341/DM12286.
- 50. Распространенность психоэмоционального стресса среди российской популяции и его ассоциации с социально-демографическими показателями. Данные исследования ЭССЕ-РФ3 / О. М. Драпкина, Л. И. Гоманова, Ю. А. Баланова [и др.]. Текст: непосредственный // Кардиоваскулярная терапия и профилактика. 2023. Т. 22, № 8S. С. 3795. DOI: 10.15829/1728-8800-2023-3795. EDN: OAQXPT.
- 51. Распространенность сочетания артериальной гипертонии и дислипидемии среди взрослого населения крупного восточносибирского региона / Ю. И. Гринштейн, В. В. Шабалин, Р. Р. Руф [и др.]. Текст: непосредственный // Кардиоваскулярная терапия и профилактика. 2021. Т. 20, № 4. С. 19—25. DOI: 10.15829/1728-8800-2021-2865. EDN: UMVLCQ.
- 52. Распространенность факторов риска сердечно-сосудистых заболеваний в российской популяции больных артериальной гипертонией / И. Е. Чазова, Ю. В. Жернакова, Е. В. Ощепкова [и др.]. Текст: непосредственный // Кардиология. 2014. Т. 54, № 10. С. 4–12. DOI: 10.18565/cardio.2014.10.4-12. EDN: SXZGCP.
- 53. Риск сердечно-сосудистой смерти в зависимости от уровней артериального давления у мужчин и женщин Тюмени: результаты 12-летнего проспективного исследования / Е. В. Акимова, Г. С. Пушкарев, В. В. Гафаров [и др.]. Текст: непосредственный // Терапевтический архив 2013. Т. 85, № 3. С. 70–74.
 - 54. Роль активации симпатической нервной системы в лечении

- артериальной гипертонии. Фокус на пациента с повышенной частотой сердечных сокращений. Экспертное мнение / С. А. Бойцов, Ю. А. Карпов, О. Д. Остроумова [и др.]. Текст : непосредственный // Атмосфера. Новости кардиологии. 2020. N 1. С. 20–29.
- 55. Самородская, И. В. Смертность от артериальной гипертензии в регионах Российской Федерации в период с 2013 г. по 2019 г. / И. В. Самородская, В. Ю. Семенов. Текст : непосредственный // Кардиология. 2021. Т. 61, № 12. С. 59–65. DOI: 10.18087/cardio.2021.12.n1643.
- 56. Серёгин, В. И. Региональная медико-просветительская антитабачная акция как элемент популяционной стратегии отказа от курения / В. И. Серёгин, Г. Б. Артемьева, С. С. Якушин. Текст : непосредственный // Социальные аспекты здоровья населения. 2022. № 6. DOI: 10.21045/2071-5021-2022-68-6-10.
- 57. Смирнова, Е. А. Динамика распространенности факторов риска сердечно-сосудистых заболеваний в Рязанской области / Е. А. Смирнова. Текст : непосредственный // Кардиоваскулярная терапия и профилактика. 2013. Т. 12, № 3. С. 35—39. DOI: 10.15829/1728-8800-2013-3-35-39.
- 58. Тревога и депрессия: десятилетняя динамика распространенности и её ассоциации с демографическими и социально-экономическими показателями / С. Е. Евстифеева, С. А. Шальнова, В. А. Куценко, [и др.]. Текст : непосредственный // Кардиоваскулярная терапия и профилактика. 2023. Т. 22, № 8S. С. 3796. DOI: 10.15829/1728-8800-2023-3796. EDN: ZRQCJG.
- 59. Факторы риска неинфекционных заболеваний населения Рязанской области (по данным исследования МЕРИДИАН-РО как пилотного проекта исследования ЭССЕ-РФ) / С. А. Бойцов, Е. В. Филиппов, С. А. Шальнова [и др.]. Текст: непосредственный // Профилактическая медицина. 2013. Т. 16, № 6. С. 48–54.
- 60. Филиппов Е. В. Наличие клинически значимой тревоги и депрессии как новый фактор риска хронических неинфекционных заболеваний? / Е. В. Филиппов, Е. В. Заикина, Н. Н. Никулина. Текст: непосредственный // Наука молодых (Eruditio Juvenium). 2019. Т. 7, № 1. С. 28–37. DOI: 10.23888/HMJ20197128-37.

- 61. Филиппов, Е. В. Артериальная гипертензия: как оптимизировать терапию пациента? / Е. В. Филиппов. Текст : непосредственный // Земский врач. 2015. № 1(25). С. 13–19. EDN: TICSCP.
- 62. Чазова, И. Е. Диагностика и лечение артериальной гипертензии: (Рекомендации Российского медицинского общества по артериальной гипертонии и Всероссийского научного общества кардиологов) / И. Е. Чазова, Л. Г. Ратова, С. А. Бойцов. Текст: непосредственный // Системные гипертензии. 2010. Т. 3. С. 5–26.
- Щербакова О.Н. Ранняя диагностика нарушений углеводного обмена, в 63. сопоставлении с другими метаболическими нарушениями, у сотрудников органов внутренних дел, страдающих гипертонической болезнью / О. Н. Щербакова. – Текст: непосредственный // Российский медико-биологический вестник им. 2016. T. 2. C. И. Π. 24. No 51-57. Павлова. DOI: академика 10.17816/PAVLOVJ2016251-57.
- 64. Якушин, С. С. Факторы риска сердечно-сосудистых заболеваний в Рязанской области (по данным исследования МЕРИДИАН-РО) / С. С. Якушин, Е. В. Филиппов. Текст : непосредственный // Наука молодых Eruditio Juvenium. 2013. № 4. С. 89—103.
- 65. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults / P. Greenland, J. S. Alpert, G. A. Beller [et al.]. Text : visual // Journal of the American College of Cardiology. 2010. T. 56. C. e50–103.
- 66. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice / M. F. Piepoli, A. W. Hoes, S. Agewall [et al.]. Text: visual // European Heart Journal. 2016. T. 37. C. 2315–2381. DOI: 10.1093/eurheartj/ehw106.
- 67. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH) / B. Williams, G. Mancia, W. Spiering [et al.]. Text: visual // European Heart Journal. 2018. T. 39,

- № 33. C. 3021–3104. DOI: 10.1093/eurheartj/ehy339.
- 68. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk / F. Mach, C. Baigent, A. L. Catapano [et al.]. Text: visual // European Heart Journal. 2020. T. 41, № 1. C. 111–188. DOI: 10.1093/eurheartj/ehz455.
- 69. 2020 International Society of Hypertension Global Hypertension Practice Guidelines / T. Unger, C. Borghi, F. Charchar [et al.]. Text: visual // Hypertension. 2020. T. 75, № 6. C. 1334–1357. DOI: 10.1161/HYPERTENSIONAHA.120.15026.
- 70. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice / F. L. J. Visseren, F. Mach, Y. M. Smulders [et al.]. Text : visual // European Heart Journal. 2021. T. 42. C. 3227–3379.
- 71. 2023 ESH guidelines for the management of arterial hypertension / G. Mancia, R. Kreutz, M. Brunström [et al.]. Text : visual // Journal of Hypertension. 2023. DOI: 10.1097/HJH.000000000003480.
- 72. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension / J. W. McEvoy, C. P. McCarthy, R. M. Bruno [et al.]. Text: visual // European Heart Journal. 2024. ehae178. DOI: 10.1093/eurheartj/ehae178.
- 73. Acute effects of cigarette smoking on arterial stiffness and blood pressure in male smokers with hypertension / M. Y. Rhee, S. H. Na, Y. K. Kim [et al.]. Text: visual // American Journal of Hypertension. 2007. T. 20, № 6. C. 637–641. DOI: 10.1016/j.amjhyper.2006.12.017.
- 74. Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study / E. J. Brunner, H. Hemingway, B. R. Walker [et al.]. Text: visual // Circulation. 2002. T. 106, № 21. C. 2659–2665. DOI: 10.1161/01.CIR.0000038364.26310.BD.
- 75. Age, sex, and hypertension-related remodeling influences left ventricular torsion assessed by tagged cardiac magnetic resonance / K. Yoneyama, O. Gjesdal, E. Y. Choi [et al.]. Text: visual // Circulation. 2012. T. 126, № 21. C. 2481–2490. DOI: 10.1161/circulationaha.112.093146.
 - 76. Age-adjusted reference limits for carotid intima-media thickness as better

- indicator of vascular risk: population-based estimates from the VITA project / A. Tosetto, P. Prati, C. Baracchini [et al.]. Text: visual // Journal of Thrombosis and Haemostasis. 2005. T. 3. C. 1224–1230.
- 77. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies / S. Lewington, R. Clarke, N. Qizilbash [et al.]. Text: visual // Lancet. 2002. T. 360, № 9349. C. 1903–1913. DOI: 10.1016/s1040-6736(02)11911-8.
- 78. Akintunde, A. A. Effect of systemic hypertension on right ventricular morphology and function: an echocardiographic study / A. A. Akintunde, P. O. Akinwusi, O. B. Familoni. Text: visual // Cardiovascular Journal of Africa. 2010. T. 21, № 5. C. 252–256. DOI: 10.5830/cvja-2010-013. PMID: 20972511; PMCID: PMC3721898.
- 79. Arterial Hypertension-clinical trials update 2023 / F. Götzinger, M. Kunz, L. Lauder, [et al.]. Text: visual // Hypertension Research. 2023 Sep. T. 46, № 9. C. 2159–2167. doi: 10.1038/s41440-023-01359-y.
- 80. Assessing the association between smoking and hypertension: smoking status, type of tobacco products, and interaction with alcohol consumption / N. Gao, T. Liu, Y. Wang [et al.]. Text: visual // Frontiers in Cardiovascular Medicine. 2023. T. 10. e1027988. DOI: 10.3389/fcvm.2023.1027988.
- 81. Assessment and Management of Patients with Obesity and Hypertension in European Society of Hypertension Excellence Centres: A survey from the ESH Working Group on Diabetes and Metabolic Risk Factors / C. Antza, G. Grassi, T. Weber, [et al.]. Text: visual // Blood Pressure. 2024 Dec. T. 33, № 1. C. 2317256. doi: 10.1080/08037051.2024.2317256.
- 82. Assessment of right ventricular systolic function using tricuspid annularplane systolic excursion in Nigerians with systemic hypertension / K. M. Karaye, A. G. Habib, S. Mohammed [et al.]. – Text : visual // Cardiovascular Journal of Africa. – 2010. – T. 21, № 4. – C. 186–190.
- 83. Association between arterial stiffness and atherosclerosis: the Rotterdam Study / N. M. van Popele, D. E. Grobbee, M. L. Bots [et al.]. Text : visual // Stroke. –

- 2001. T. 32, № 2. C. 454–460. DOI: 10.1161/01.str.32.2.454.
- 84. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis / Y. Huang, X. Cai, W. Mai [et al.]. Text: visual // BMJ. 2016. T. 355. i5953. DOI: 10.1136/bmj.i5953.
- 85. Association between smoking and blood pressure: evidence from the health survey for England / P. Primatesta, E. Falaschetti, S. Gupta [et al.]. Text: visual // Hypertension. 2001. T. 37, № 2. C. 187–193. DOI: 10.1161/01.hyp.37.2.187. PMID: 11230269.
- 86. Association of early adult modifiable cardiovascular risk factors with left atrial size over a 20-year follow-up period: the CARDIA study / A. C. Armstrong, S. S. Gidding, L. A. Colangelo [et al.] Text : visual // BMJ Open. 2014. T. 4, № 1. e004001. DOI: 10.1136/bmjopen-2013-004001.
- 87. Associations between heart rate and other risk factors in a large French population / J. Morcet, M. Safar, F. Thomas [et al.]. Text: visual // Journal of Hypertension. 1999. T. 17. C. 1671–1676.
- 88. Bandelow, B. Epidemiology of anxiety disorders in the 21st century / B. Bandelow, S. Michaelis. Text : visual // Dialogues in Clinical Neuroscience. 2015. T. 17, № 3. C. 327–335. DOI: 10.31887/DCNS.2015.17.3/bbandelow.
- 89. Black, P. H. Stress, inflammation and cardiovascular disease / P. H. Black, L. D. Garbutt. Text : visual // Journal of Psychosomatic Research. 2002. T. 52, № 1. C. 1–23. DOI: 10.1016/S0022-3999(01)00302-6.
- 90. Blood pressure and risk of cardiovascular disease in Chinese men and women / D. Gu, T. N. Kelly, X. Wu [et al.]. Text : visual // American Journal of Hypertension. 2008. T. 21. C. 265–272. PMID: 18188156.
- - 92. Burchfield, J. S. Pathological ventricular remodeling: mechanisms: part 1 of

- 2 / J. S. Burchfield, M. Xie, J. A. Hill. Text : visual // Circulation. 2013. T. 128, № 4. C. 388–400. DOI: 10.1161/circulationaha.113.001878.
- 93. Burden of undiagnosed hypertension in Sub-Saharan Africa / F. Ataklte, S. Erqou, S. Kaptoge, [et al.]. Text: visual // Hypertension. 2015. T. 65. C. 291–298. PMID: 25385758.
- 94. Cardiac Remodeling in Hypertension: Clinical Impact on Brain, Heart, and Kidney Function / S. Mavrogeni, G. Piaditis, F. Bacopoulou, [et al.]. Text: visual // Hormone and Metabolic Research. 2022 May. T. 54, № 5. C. 273–279. doi: 10.1055/a-1793-6134.
- 95. Cardiovascular risk assessment using SCORE2 in a population with hypertension The reality at a primary health care unit / S. Pereira Santos, S. Guedes, R. Pesqueira, [et al.]. Text: visual // Revista Portuguesa de Cardiologia. 2024 Nov. T. 43, № 11. C. 601–610. doi: 10.1016/j.repc.2024.03.007.
- 96. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS) / M. W. Lorenz, S. von Kegler, H. Steinmetz, [et al.]. Text: visual // Stroke. 2006. T. 37. C. 87–92.
- 97. Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women: the British regional heart study / S. Ebrahim, O. Papacosta, P. Whincup [et al.] Text: visual // Stroke. 1999. T. 30. C. 841–850.
- 98. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis / M. V. Holmes, L. A. Lange, T. Palmer [et al.]. Text : visual // The American Journal of Human Genetics. 2014. T. 94, № 2. C. 198–208. DOI: 10.1016/j.ajhg.2013.12.014.
- 99. Chamik, T. Associations between psychological stress and smoking, drinking, obesity, and high BP in an upper middle-income country in the African region / T. Chamik, B. Viswanathan, J. Gedeon, P. Bovet. Text: visual // Stress Health. 2018. T. 34. C. 93–101. DOI: 10.1002/smi.2766.
 - 100. Cheng, W. Dyslipidemia and the prevalence of hypertension: a cross-

- sectional study based on Chinese adults without type 2 diabetes mellitus / W. Cheng, J. Zhuang, S. Chen. Text: visual // Frontiers in cardiovascular medicine. 2022. T. 9. C. 938363. DOI: 10.3389/fcvm.2022.938363. PMID: 35872884; PMCID: PMC9300889.
- 101. Cigarette smoking and hypertension / A. Virdis, C. Giannarelli, M. F. Neves [et al.]. Text: visual // Current Pharmaceutical Design. 2010. T. 16, № 23. C. 2518–2525. DOI: 10.2174/138161210792062920.
- 102. Clinical policy: critical issues in the evaluation and management of adult patients with asymptomatic hypertension in the emergency department / W. W. Decker, S. A. Godwin, E. P. Hess, [et al.]. Text: visual // Annals of Emergency Medicine 2006 Mar;47(3):237-49. DOI: 10.1016/j.annemergmed.2005.10.003.
- 103. Coronelli, M.M. Inflammation, atherosclerosis and hypertension: the impact of depression and stress on their complex relationship / M.M. Coronelli, F. Coppi, A.V. Mattioli. Text: visual // Future Cardiology. 2024 Jan. T. 20, № 1. C. 27–33. doi: 10.2217/fca-2023-0030.
- 104. Country-based reference values and impact of cardiovascular risk factors on carotid intima-media thickness in a French population: the "Paroi Artérielle et Risque Cardio-Vasculaire" (PARC) study / P. J. Touboul, J. Labreuche, E. Vicaut [et al.]. Text : visual // Cerebrovascular Diseases. 2009. T. 27, № 4. C. 361–367.
- 105. Cumulative blood pressure from early adulthood to middle age is associated with left atrial remodeling and subclinical dysfunction / H. D. Vasconcellos, H. T. Moreira, L. Ciuffo [et al.]. Text : visual // European Heart Journal Cardiovascular Imaging. 2018. T. 19, N = 9. C. 977–984. DOI: 10.1093/ehjci/jey086.
- 106. Cumulative blood pressure in early adulthood and cardiac dysfunction in middle age: the CARDIA study / S. Kishi, G. Teixido-Tura, H. Ning [et al.]. Text: visual // Journal of the American College of Cardiology. 2015. T. 65, № 25. C. 2679–2687. DOI: 10.1016/j.jacc.2015.04.042.
- 107. Diagnostic and prognostic value of long-axis strain and myocardial contraction fraction using standard cardiovascular MR imaging in patients with nonischemic dilated cardiomyopathies / N. Arenja, J. H. Riffel, T. Fritz [et al.] Text:

- visual // Radiology. 2017. T. 283, № 3. C. 681–691. DOI: 10.1148/radiol.2016161184.
- 108. Differences in prevalence, awareness, treatment and control of hypertension between developing and developed countries / M. Pereira, N. Lunet, A. Azevedo [et al.]. Text: visual // Journal of Hypertension. 2009. T. 27, № 5. C. 963–975. DOI: 10.1097/hjh.0b013e3283282f65.
- 109. Dionne, J.M. Updated Guideline May Improve the Recognition and Diagnosis of Hypertension in Children and Adolescents Review of the 2017 AAP Blood Pressure Clinical Practice Guideline / J.M. Dionne. Text: visual // Current Hypertension Reports 2017 Oct 16;19(10):84. DOI: 10.1007/s11906-017-0780-8.
- 110. Disparities in hypertension control advice according to smoking status / A. J. Caban-Martinez, E. P. Davila, W. Zhao [et al.]. Text: visual // Preventive Medicine. 2010. T. 51, № 3–4. C. 302–306. DOI: 10.1016/j.ypmed.2010.06.012. PMID: 20600258; PMCID: PMC2939289.
- 111. Distinct aspects of left ventricular mechanical function are differentially associated with cardiovascular outcomes and all-cause mortality in the community / S. Cheng, E. L. McCabe, M. G. Larson [et al.]. Text: visual // Journal of the American Heart Association. 2015. T. 4, N_0 10. e002071. DOI: 10.1161/jaha.115.002071.
- 112. Early release of selected estimates from the 2019 National Health Interview Survey Text: electronic URL: https://www.cdc.gov/nchs/data/nhis/earlyrelease/EarlyRelease202009-508.pdf.
- 113. Effect of fasting blood glucose on risk of new-onset hypertension in rural Chinese population: a 15-year follow-up cohort / J. Liu, N. N. Cheng, Z. Y. Zhou [et al.]. Text: visual // BMC Cardiovascular Disorders. 2021. T. 21. C. 531. DOI: 10.1186/s12872-021-02336-4.
- 114. Effect of plasma fibrinogen, high-sensitive C-reactive protein, and cigarette smoking on carotid atherosclerosis: the Suita study / I. K. Kawase, Y. Kokubo, C. Yokota [et al.]. Text: visual // Journal of Stroke and Cerebrovascular Diseases. 2015. T. 24. C. 2385–2389.
 - 115. Effect of potentially modifiable risk factors associated with myocardial

- infarction in 52 countries (the INTERHEART study): case-control study / S. Yusuf, S. Hawken, S. Ounpuu [et al.]. Text : visual // Lancet. 2004. T. 364, № 9438. C. 937–952. DOI: 10.1016/S0140-6736(04)17018-9.
- 116. Egan, B. M. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008 / B. M. Egan, Y. Zhao, R. N. Axon. Text: visual // JAMA. 2010. T. 303, № 20. C. 2043–2050. DOI: 10.1001/jama.2010.650. PMID: 20501926.
- 117. Epidemiology of left ventricular systolic dysfunction and heart failure in the Framingham study: an echocardiographic study over 3 decades / R. S. Vasan, V. Xanthakis, A. Lyass [et al.]. Text : visual // JACC Cardiovascular Imaging. 2018. T. 11, № 1. C. 1–11. DOI: 10.1016/j.jcmg.2017.08.007.
- 118. Estimating the association of the 2017 and 2014 hypertension guidelines with cardiovascular events and deaths in US adults: an analysis of national data / J. D. Bundy, K. T. Mills, J. Chen [et al.]. Text : visual // JAMA Cardiology. 2018. T. 3. C. 572–581. PMID: 29800138.
- 119. EUROASPIRE IV: A European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries/ K. Kotseva, D. De Bacquer, C. Jennings, [et al.]. Text: visual // European Journal of Preventive Cardiology. 2016. T. 23, № 6. C. 636–648.
- 120. EUROASPIRE V: European survey of cardiovascular disease prevention and diabetes // European Society of Cardiology. 2019. Text: electronic. URL: https://www.escardio.org/Research/registries/global-registries-and-surveys-programme/euroaspire-v.
- 121. European guidelines on cardiovascular disease prevention in clinical practice. Third joint task force of European and other societies on cardiovascular disease prevention in clinical practice / G. De Backer, E. Ambrosioni, K. Borch-Johnsen // European Heart Journal. 2003. T. 24. C. 1601–1610.
- 122. European guidelines on cardiovascular disease prevention in clinical practice: executive summary / I. Graham, D. Atar, K. Borch-Johnsen [et al.]. Text: visual // European Heart Journal. 2007. T. 28, № 19. C. 2375–2414. DOI:

- 10.1093/eurheartj/ehm316.
- 123. Framingham score and LV mass predict events in young adults: CARDIA study / A. C. Armstrong, D. R. Jacobs Jr, S. S. Gidding [et al.]. Text: visual // International Journal of Cardiology. 2014. T. 172, № 2. C. 350–355. DOI: 10.1016/j.ijcard.2014.01.003.
- 124. Gaziano T. A. The global cost of nonoptimal blood pressure / T. A. Gaziano, A. Bitton, S. Anand, M. C. Weinstein Text : visual // Journal of Hypertension. 2009.
- 125. GBD 2016 Russia Collaborators. The burden of disease in Russia from 1980 to 2016: a systematic analysis for the Global Burden of Disease Study 2016 / GBD 2016 Russia Collaborators Text: visual // Lancet. 2018. T. 392, № 10153. C. 1138–1146. DOI: 10.1016/S0140-6736(18)31485-5. PMID: 30173906; PMCID: PMC6172188.
- 126. GBD 2019 Risk Factor Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019 / GBD 2019 Risk Factor Collaborators Text: visual // Lancet. 2020. T. 396. C. 1223–1249.
- 127. General cardiovascular risk profile for use in primary care: the Framingham Heart Study / R. B. D'Agostino Sr, R. S. Vasan, M. J. Pencina [et al.]. Text: visual // Circulation. 2008. T. 117, № 6. C. 743–753. DOI: 10.1161/CIRCULATIONAHA.107.699579. PMID: 18212285.
- 128. Gerdts, E. Left atrial enlargement: a prevalent marker of hypertensive heart disease / E. Gerdts. Text : visual // Blood Pressure. 2012. T. 21, № 2. C. 71–72. DOI: 10.3109/08037051.2012.677511.
- 129. Gjesdal, O. Cardiac remodeling at the population level − risk factors, screening, and outcomes / O. Gjesdal, D. A. Bluemke, J. A. Lima. − Text: visual // Nature Reviews Cardiology. − 2011. − T. 8, № 12. − C. 673–685. − DOI: 10.1038/nrcardio.2011.154.
- 130. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015 / M. H. Forouzanfar, P. Liu, G. A. Rot, [et al.]. Text: visual // JAMA. 2017. T. 317. C. 165–182. PMID: 28097354.

- 131. Global burden of metabolic diseases, 1990-2021 / H. Zhang, X.D. Zhou, M.D. Shapiro, [et al.]. Text : visual // Metabolism. 2024 Nov. T. 160. C. 155999. doi: 10.1016/j.metabol.2024.155999.
- 132. Global disparities of hypertension prevalence and control / K. T. Mills, J. D. Bundy, T. N. Kelly [et al.]. Text: visual // Circulation. 2016. T. 134. C. 441–450. PMID: 27502908.
- 133. Global report on hypertension: the race against a silent killer Text: electronic. URL : https://www.who.int/teams/noncommunicable-diseases/hypertension-report.
- 134. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013 / M. Ng, T. Fleming, M. Robinson [et al.]. Text: visual // Lancet. 2014. T. 384, № 9945. C. 766–781. DOI: 10.1016/S0140-6736(14)60460-8.
- 135. Guidelines for the echocardiographic assessment of the right heart in adults / L. G. Rudski, W. W. Lai, J. Afilalo [et al.]. Text: visual // Journal of the American Society of Echocardiography. 2010. T. 23, № 7. C. 685–713. DOI: 10.1016/j.echo.2010.05.010.
- 136. Gupta, R. Prevalence of hypertension and treatment adherence in women and men / R. Gupta, K. Gaur, S. S. Sarpal. Text: visual // International Journal of Cardiology. 2017. T. 240. C. 260–266.
- 137. Harvey, W. Exercitatio anatomica de motu cordis et sanguinis in animalibus / W. Harvey. Text : visual // Florence : R. Lier & co., 1928.
- 138. Heart rate as a predictor of development of sustained hypertension in subjects screened for stage 1 hypertension: the HARVEST Study / P. Palatini, F. Dorigatti, V. Zaetta [et al.]. Text: visual // Journal of Hypertension. 2006. T. 24. C. 1873–1880.
- 139. Heart rate as a risk factor in hypertensive individuals: the Italian TensioPulse Study / E. Farinaro, S. Stranges, G. Guglielmucci [et al.]. Text: visual // Nutrition, Metabolism and Cardiovascular Diseases. 1999. T. 9. C. 196–202.
 - 140. High fasting blood glucose level increases risk of hypertension incidence

- independent of insulin resistance in Japanese: the Saku study / Y. Tatsumi, K. Asayama, A. Morimoto [et al.]. Text: visual // Journal of Hypertension. 2021. T. 39. C. e15–e16. DOI: 10.1097/01.hjh.0000744524.77852.ec.
- 141. High heart rate: a cardiovascular risk factor? / S. Cook, M. Togni, M. C. Schaub, [et al.]. Text: visual // European Heart Journal 2006. T. 27. C. 2387–2393.
- 142. Hodgkinson, S. Improving mental health access for low-income children and families in the primary care setting / S. Hodgkinson, L. Godoy, L. S. Beers, A. Lewin. Text: visual: // Pediatrics. 2017. T. 139, № 1. e20151175. DOI: 10.1542/peds.2015-1175.
- 143. Hyperkinetic borderline hypertension in Tecumseh, Michigan / S. Julius, L. Krause, N. Schork [et al.]. Text : visual // Journal of Hypertension. 1991. T. 9, № 1. C. 77–84. DOI: 10.1097/00004872-199101000-00012.
- 144. Identification and management of the hypertensive patient with elevated heart rate: statement of a European Society of Hypertension Consensus Meeting / P. Palatini, A. Benetos, G. Grassi [et al.]. Text : visual // Journal of Hypertension. 2006. T. 24. C. 603–610.
- 145. Identification of novel proteins mediating causal association between smoking and essential hypertension: a Mendelian randomization study / J. Shi, Z. Liang, Z. Liu, [et al.]. Text: visual // Journal of the American Heart Association. 2024 Dec 3. T. 13, № 23. C. e036202. doi: 10.1161/JAHA.124.036202.
- 146. Impact of arterial hypertension on left atrial size and function / Y. Ikejder, M. Sebbani, I. Hendy. [et al.]. Text : visual // BioMed Research International. 2020. T. 2020. C. 2587530. DOI: 10.1155/2020/2587530.
- 147. Impact of hypertension diagnosis on morbidity and mortality: a retrospective cohort study in primary care / J. Martín-Fernández, T. Alonso-Safont, E. Polentinos-Castro [et al.]. Text: visual // BMC Primary Care. 2023. T. 24, № 1. C. 79. DOI: 10.1186/s12875-023-02036-2. PMID: 36959558; PMCID: PMC10037862.
- 148. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines / S. M. Grundy, J. I. Cleeman, C. N. Merz

- [et al.]. Text : visual // Circulation. 2004. T. 110, № 2. C. 227–239. DOI: 10.1161/01.CIR.0000133317.49796.0E.
- 149. Incidence hypertension and fasting blood glucose from real-world data: retrospective cohort for 7-years follow-up / S. K. Ahn, J. M. Lee, S. M. Ji [et al.]. Text : visual // International Journal of Environmental Research and Public Health. 2021. T. 18, № 4. C. 2085. DOI: 10.3390/ijerph18042085. PMID: 33669927; PMCID: PMC7924835.
- 150. Incident coronary events and case fatality in relation to common carotid intima-media thickness / M. Rosvall, L. Janzon, G. Berglund [et al.]. Text : visual // J. Internal Medicine. 2005. T. 257. C. 430–437.
- 151. International Diabetes Federation. IDF Diabetes Atlas / International Diabetes Federation. 8-edition– Brussels: IDF, 2017. 148 c. Text: electronic. https://diabetesatlas.org/atlas/eighth-edition/
- 152. Intima-media thickness is linearly and continuously associated with systolic blood pressure in a population-based cohort (STANISLAS cohort study) / J. P. Ferreira, N. Girerd, E. Bozec [et al.]. Text : visual // Journal of the American Heart Association. 2016. T. 5. e003529.
- 153. Is there a relationship between right ventricular and right atrial mechanics and functional capacity in hypertensive patients? / M. Tadic, C. Cuspidi, J. Suzic-Lazic [et al.]. Text: visual // Journal of Hypertension. 2014. T. 32, № 4. C. 929–937. DOI: 10.1097/hjh.0000000000000102.
- 154. Jha, P. Avoidable global cancer deaths and total deaths from smoking / P. Jha. Text : visual // Nature Reviews Cancer. 2009. T. 9, № 9. C. 655.
- 155. Jha, P. Global effects of smoking, of quitting, and of taxing tobacco / P. Jha, R. Peto Text: visual // The New England Journal of Medicine. 2014. T. 370, № 1. C. 60–68.
- 156. Kaplan, M. Oxidized low density lipoprotein: atherogenic and proinflammatory characteristics during macrophage foam cell formation / M. Kaplan, M. Aviram. Text: visual // Clinical Chemistry and Laboratory Medicine. 1999. T. 37, № 8. C. 777–787. DOI: 10.1515/CCLM.1999.118.

- 157. Katz, A. M. Maladaptive growth in the failing heart: the cardiomyopathy of overload / A. M. Katz. Text : visual // Cardiovascular Drugs and Therapy. 2002. T. 16, N_2 3. C. 245–249.
- 158. Kish, L. Survey Sampling / L. Kish. Text : visual // New York: John Wiley and Sons, 1965.
- 159. Left atrial enlargement in the early stage of hypertensive heart disease: a common but ignored condition / G. Su, H. Cao, S. Xu [et al.]. Text : visual // Journal of clinical hypertension (Greenwich). 2014. T. 16, № 3. C. 192–197. DOI: 10.1111/jch.12282.
- 160. Left ventricular global function index predicts incident heart failure and cardiovascular disease in young adults / C. C. Nwabuo, A. A. C. Armstrong, B. Ambale-Venkatesh [et al.]. Text : visual // European Heart Journal Cardiovascular Imaging. 2018. T. 20, № 5. C. 533–540. DOI: 10.1093/ehjci/jey123.
- 161. Left ventricular mechanical function: clinical correlates, heritability, and association with parental heart failure / S. Cheng, E. L. McCabe, M. G. Larson [et al.]. Text: visual // European Journal of Heart Failure. 2015. T. 17, № 1. C. 44–50. DOI: 10.1002/ejhf.202.
- 162. Left ventricular shape predicts different types of cardiovascular events in the general population / B. Ambale-Venkatesh, K. Yoneyama, R. K. Sharma [et al.]. Text: visual // Heart. 2017. T. 103, N = 7. C. 499–507. DOI: 10.1136/heartjnl-2016-310052.
- 163. Li, D. Association between perceived stress and hypertension in Chinese adults: a population-based survey / D. Li, C. Rong, Q. Kang. Text : visual // Journal of Human Hypertension. 2023 Apr. T. 37, № 4. C. 321–326. doi: 10.1038/s41371-022-00684-y.
- 164. LIPITENSION: interplay between dyslipidemia and hypertension / J. J. Dalal, T. N. Padmanabhan, P. Jain [et al.]. Text: visual // Indian Journal of Endocrinology and Metabolism. 2012. T. 16, № 2. C. 240–245. DOI: 10.4103/2230-8210.93742.
 - 165. Longitudinal tracking of left atrial diameter over the adult life course:

- clinical correlates in the community / D. D. McManus, V. Xanthakis, L. M. Sullivan [et al.]. Text: visual // Circulation. 2010. T. 121, № 5. C. 667–674. DOI: 10.1161/circulationaha.109.885806.
- 166. Longitudinal trends in cardiovascular mortality and blood pressure levels, prevalence, awareness, treatment, and control of hypertension in the Czech population from 1985 to 2007/2008 / R. Cífková, Z. Skodová, J. Bruthans [et al.]. Text : visual // Journal of Hypertension. 2010. T. 28, № 11. C. 2196–2203. DOI: 10.1097/HJH.0b013e32833d4451. PMID: 20651603.
- 167. Lorenz, M. W. Is carotid intima media thickness useful for individual prediction of cardiovascular risk? Ten-year results from the carotid atherosclerosis progression study (CAPS) / M. W. Lorenz, C. Schaefer, H. Steinmetz, M. Sitzer. Text : visual // European Heart Journal. 2010. T. 31. C. 2041–2048.
- 168. Lucas-Herald, A.K. Carotid Intima-Media Thickness Is Associated With Obesity and Hypertension in Young People / A.K. Lucas-Herald, C. Delles. Text: visual // Hypertension. 2022 Jun. T. 79, № 6. C. 1177–1179. doi: 10.1161/HYPERTENSIONAHA.122.19163.
- 169. Mathers, C. D. Projections of global mortality and burden of disease from 2002 to 2030 / C. D. Mathers, D. Loncar. Text : visual // PLOS Medicine. 2006. T. $3, N_2 11. e442.$
- 170. Messner, B. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis / B. Messner, D. Bernhard. Text: visual // Arteriosclerosis, Thrombosis, and Vascular Biology. 2014. T. 34. C. 509–515. DOI: 10.1161/ATVBAHA.113.300156.
- 171. Mills, K. T. The global epidemiology of hypertension / K. T. Mills, A. Stefanescu, J. He. Text : visual // Nature Reviews Nephrology. 2020. T. 16, № 4. C. 223–237. DOI: 10.1038/s41581-019-0244-2. PMID: 32024986; PMCID: PMC7998524.
- 172. Modifiable risk factors, cardiovascular disease, and mortality in 155,722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study / S. Yusuf, P. Joseph, S. Rangarajan [et al.]. Text: visual //

- Lancet. 2020. T. 395, № 10226. C. 795–808.
- 173. Morisky, D. E. Concurrent and predictive validity of a self-reported measure of medication adherence / D. E. Morisky, L. W. Green, D. M. Levine. Text : visual // Medical Care. 1986. T. 24, N 1. C. 67–74.
- 174. Morisky, D. E. Predictive validity of a medication adherence measure in an outpatient setting / D. E. Morisky, A. Ang, M. Krousel-Wood, H. J. Ward. Text: visual // The Journal of Clinical Hypertension. 2016. T. 8, $N \ge 2$. C. 109–117.
- 175. Natural history of myocardial function in an adult human population: serial longitudinal observations from MESA / K. Yoneyama, S. Donekal, B. A. Venkatesh [et al.]. Text: visual // JACC Cardiovascular Imaging. 2016. T. 9, № 10. C. 1164–1173. DOI: 10.1016/j.jcmg.2016.01.038.
- 176. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants / NCD Risk Factor Collaboration (NCD-RisC) Text : visual // Lancet. 2021. T. 398, № 10304. C. 957–980. DOI: 10.1016/S0140-6736(21)01330-1.
- 177. Nwabuo, C. C. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy / C. C. Nwabuo, R. S. Vasan. Text: visual // Current Hypertension Reports. 2020. T. 22, № 2. C. 11. DOI: 10.1007/s11906-020-1017-9.
- 178. Obesity, Adipose Tissue and Vascular Dysfunction / M. Koenen, M. A. Hill, P. Cohen, [et al.]. Text: visual // Circulation Research. 2021 Apr 2;128(7):951-968. DOI: 10.1161/CIRCRESAHA.121.318093. Epub 2021 Apr 1. PMID: 33793327; PMCID: PMC8026272.
- 179. Onur-Beyaz, M. Carotid artery screening in high risk asymptomatic individuals: outcomes of 3000 carotid screening / M. Onur-Beyaz, İ. Demir, E. Can-Ata. Text: visual // Cirugía y Cirujanos. 2022. T. 90, № 1. C. 11–16. DOI: 10.24875/CIRU.20001356. PMID: 35120095.
- 180. Poredoš, P. Characteristics of atherosclerosis in femoropopliteal artery and its clinical relevance / P. Poredoš, M. Cevc, A. Blinc. Text : visual // Atherosclerosis. –

- 2021. T. 335. C. 31–40. DOI: 10.1016/j.atherosclerosis.2021.09.012. PMID: 34547588.
- 181. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis / M. W. Lorenz, H. S. Markus, M. L. Bots [et al.]. Text: visual // Circulation. 2007. T. 115, N = 4. C. 459–467. DOI: 10.1161/CIRCULATIONAHA.106.628875.
- 182. Predictive Value of the SCORE, SCORE2, and Pooled Cohort Risk Equation Systems in Patients with Hypertension / M. Karakayalı, H. Püşüroğlu, M. Altunova, [et al.]. Text: visual // Turk Kardiyoloji Dernegi Arsivi. 2023 Sep. T. 51, № 6. C. 407–414. doi: 10.5543/tkda.2023.74249.
- 183. Prevalence and correlates of myocardial scar in a US cohort / E. B. Turkbey, M. S. Nacif, M. Guo [et al.]. Text : visual // JAMA. 2015. T. 314, № 18. C. 1945–1954. DOI: 10.1001/jama.2015.14849.
- 184. Prevalence of asymptomatic carotid artery stenosis according to age and sex: systematic review and metaregression analysis / de Weerd M., Greving J. P., de Jong A. W., [et al.]. Text: visual // Stroke. 2009. Vol. 40, №. 4. P. 1105–1113. DOI: 10.1161/STROKEAHA.108.532218.
- 185. Prevalence of hypertension among Chinese adults in 2010 / Y. C. Li, L. M. Wang, Y. Jiang [et al.]. Text : visual // Zhonghua Yu Fang Yi Xue Za Zhi. 2012. Т. 46. С. 409–413. (на китайском языке).
- 186. Prevalence, risk factors and awareness of hypertension in India: a systematic review / P. Devi, M. Rao, A. Sigamani [et al.]. Text: visual // Journal of Human Hypertension. 2013. T. 27, № 5. C. 281–287. DOI: 10.1038/jhh.2012.33. PMID: 22971751.
- 187. Prevention of coronary heart disease in clinical practice. Recommendations of the Task Force of the European Society of Cardiology, European Atherosclerosis Society and European Society of Hypertension / K. Pyörälä, G. De Backer, I. Graham [et al.]. Text: visual // European Heart Journal. 1994. T. 15, № 10. C. 1300–1331. DOI: 10.1093/oxfordjournals.eurheartj.a060388. PMID: 7821306.
 - 188. Prevention of coronary heart disease in clinical practice: recommendations

- of the second joint Task Force of European and other societies on coronary prevention / D. Wood, G. De Backer, O. Faergeman [et al.]. Text : visual // Atherosclerosis. 1998. T. 140. C. 199–270.
- 189. Primary prevention of coronary heart disease: guidance from Framingham: a statement for healthcare professionals from the AHA Task Force on Risk Reduction / S. M. Grundy, G. J. Balady, M. H. Criqui [et al.] Text : visual // Circulation. 1998. T. 97. C. 1876–1887.
- 190. Progress in diagnosis and treatment of hypertension combined with left ventricular hypertrophy / Y. Han, Y. Li, Z. Wu, [et al.]. Text: visual // Annals of Medicine. 2024 Dec. T. 56, № 1. C. 2405080. doi: 10.1080/07853890.2024.2405080.
- 191. Psychological covariates of blood pressure among patients with hypertension and metabolic syndrome / A. Brugnera, A. Compare, S. Omboni [et al.]. Text: visual // Health Psychology. 2022. T. 41, № 12. C. 946–954. DOI: 10.1037/hea0001205. PMID: 35862126.
- 192. Relation between adolescent cardiovascular risk factors and carotid intimamedia echogenicity in healthy young adults: the atherosclerosis risk in young adults (ARYA) study / A. L. Eikendal, K. A. Groenewegen, M. L. Bots [et al.]. Text: visual // Journal of the American Heart Association. 2016. T. 5. e002941.
- 193. Relation of cardiovascular risk factors to right ventricular structure and function as determined by magnetic resonance imaging (results from the Multi-Ethnic Study of Atherosclerosis) / H. Chahal, C. Johnson, H. Tandri [et al.]. Text : visual // American Journal of Cardiology. 2010. T. 106, N 1. C. 110–116.
- 194. Relation of regional fat distribution to left ventricular structure and function / I. J. Neeland, S. Gupta, C. R. Ayers [et al.]. Text : visual // Circulation: Cardiovascular Imaging. 2013. T. 6, № 5. C. 800–807. DOI: 10.1161/CIRCIMAGING.113.000532.
- 195. Resting heart rate in cardiovascular disease / K. Fox, J. S. Borer, J. Camm [et al.]. Text : visual // Journal of the American College of Cardiology. 2007. T. 50. C. 823-830.

- 196. Ridley M. Poverty, depression, and anxiety: causal evidence and mechanisms / M. Ridley, G. Rao, F. Schilbach, V. Patel. Text: visual // Science. 2020. T. 370, № 6522. C. 214. DOI: 10.1126/science.aay0214.
- 197. Right atrial structure and function in patients with hypertension and with chronic heart failure / M. Proplesch, A. A. Merz, B. L. Claggett [et al.]. Text : visual // Echocardiography. 2018. T. 35, № 7. C. 905–914. DOI: 10.1111/echo.13876.
- 198. Right atrial volume index in chronic systolic heart failure and prognosis / J. A. Sallach, W. H. Tang, A. G. Borowski [et al.]. Text : visual // JACC: Cardiovascular Imaging. 2009. T. 2, № 5. C. 527–534. DOI: 10.1016/j.jcmg.2009.01.012.
- 199. Right ventricular shape and function: cardiovascular magnetic resonance reference morphology and biventricular risk factor morphometrics in UK Biobank / C. Mauger, K. Gilbert, A. M. Lee [et al.]. Text: visual // Journal of Cardiovascular Magnetic Resonance. 2019. T. 21, N = 1. C. 41. DOI: 10.1186/s12968-019-0551-6.
- 200. Ritchie, H. In which countries do people smoke the most? / H. Ritchie. OurWorldInData.org, 2019. Text: electronic. URL: https://ourworldindata.org/which-countries-smoke-most
- 201. Santos, R. D. EUROASPIRE V and uncontrolled risk factors in primary prevention: Atherosclerotic cardiovascular disease in the making / R. D. Santos. Text: visual // European Journal of Preventive Cardiology. 2021. T. 28, N 4. C. 380–382. DOI: 10.1177/2047487320915662.
- 202. Seravalle, G. Heart rate as a predictor of cardiovascular risk / G. Seravalle, F. Quarti Trevano, G. Grassi. Text: visual // Minerva Medica. 2021 Feb. T. 112, № 1. C. 130–143. doi: 10.23736/S0026-4806.20.06695-1.
- 203. Serum cholesterol, blood pressure, and mortality: implications from a cohort of 361,662 men / M. J. Martin, S. B. Hulley, W. S. Browner [et al.]. Text: visual // Lancet (London, England). 1986. T. 2. C. 933–936.
- 204. Serum markers of endothelial dysfunction and inflammation increase in hypertension with prediabetes mellitus / Z. Huang, C. Chen, S. Li [et al.]. Text : visual // Genetic Testing and Molecular Biomarkers. 2016. T. 20. C. 322–327. DOI:

- 10.1089/gtmb.2015.0255.
- 205. Shalaeva, E. V. What is resistant arterial hypertension? / E. V. Shalaeva, F. H. Messerli. Text: visual // Blood Pressure. 2023 Dec;32(1):2185457 DOI: 10.1080/08037051.2023.2185457. PMID: 36891929.
- 206. Shimizu, Y. Progression of Carotid Intima-Media Thickness Partly Indicates the Prevention of Hypertension among Older Individuals in the General Population / Y. Shimizu. Text: visual // Life (Basel). 2023 Jul 19. T. 13, № 7. C. 1588. doi: 10.3390/life13071588.
- 207. Simova, I. Intima-media thickness: appropriate evaluation and proper measurement / I. Simova. Text : visual // Journal of Cardiology Practice. 2015. T. 13, N 21. C. 1–14.
- 208. Stamler, J. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data / J. Stamler, R. Stamler, J. D. Neaton. Text: visual // Archives of internal medecine 1993. T. 153. C. 598–615. PMID: 8439223.
- 209. Systolic blood pressure in childhood predicts hypertension and metabolic syndrome later in life. / S. S. Sun, G. D. Grave, R. M. Siervogel, [et al.]. Text: visual // Pediatrics 2007 Feb;119(2):237-46. doi: 10.1542/peds.2006-2543.
- 210. Tadic, M. Obesity and resistant hypertension: never ending story / M. Tadic, C. Cuspidi. Text: visual // The Journal of Clinical Hypertension 2019. T. 21, № 10. C. 1516–1518. DOI: 10.1111/jch.13669.
- 211. Temporal elevation of blood pressure is associated with increased risk of sudden cardiac arrest. / Y. G. Kim, K. Min, J. H. Jeong, [et al.]. Text: visual // Scientific Reports 2024 Jan 27;14(1):2289. DOI: 10.1038/s41598-024-52859-x.
- 212. Ten-year longitudinal change in aortic stiffness assessed by cardiac MRI in the second half of the human lifespan: the multi-ethnic study of atherosclerosis / Y. Ohyama, G. Teixido-Tura, B. Ambale-Venkatesh [et al.]. Text: visual // European Heart Journal Cardiovascular Imaging 2016. T. 17, № 9. C. 1044–1053. DOI: 10.1093/ehjci/jev332.
- 213. The association between carotid intima-media thickness and new-onset hypertension in a Chinese community-based population / L. Zhang, F. Fan, L. Qi [et al.].

- Text : visual // BMC Cardiovascular Disorders. 2019. T. 19, № 1. C. 269. DOI: 10.1186/s12872-019-1266-1.
- 214. The association of depression and anxiety with obesity and unhealthy behaviors among community-dwelling US adults / T. W. Strine, A. H. Mokdad, S. R. Dube [et al.]. Text: visual // General Hospital Psychiatry. 2008. T. 30, № 2. C. 127–137. DOI: 10.1016/j.genhosppsych.2007.12.008.
- 215. The impact of job strain and marital cohesion on ambulatory blood pressure during 1 year: The double exposure study / S. W. Tobe, A. Kiss, S. Sainsbury [et al.]. Text: visual // American Journal of Hypertension. 2007. T. 20, № 2. C. 148–153. DOI: 10.1016/j.amjhyper.2006.07.011.
- 216. The Prospective Urban Rural Epidemiology (PURE) study: Factors associated with hypertension control / K. K. Teo, C. K. Chow, M. Vaz [et al.]. Text: visual // Lancet Global Health. 2019. T. 7, N_2 5. C. e634–e643.
- 217. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel. Detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III) // Bethesda: National Heart, Lung, and Blood Institute, 2001. − NIH Publication №. 01-3670.
- 218. Thomas, L. Left atrial reverse remodeling: mechanisms, evaluation, and clinical significance / L. Thomas, W. P. Abhayaratna. Text: visual // JACC: Cardiovascular Imaging. 2017. T. 10, № 1. C. 65–77. DOI: 10.1016/j.jcmg.2016.11.003.
- 219. Tobacco use in 3 billion individuals from 16 countries: an analysis of nationally representative cross-sectional household surveys / G. A. Giovino, S. A. Mirza, J. M. Samet [et al.]. Text: visual // Lancet. 2012. T. 380, N_2 9842. C. 668–679. DOI: 10.1016/S0140-6736(12)61085-X.
- 220. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk / J. H. Stein, C. E. Korcarz, R. T. Hurst [et al.]. Text: visual // Journal of the American Society of Echocardiography. 2008. T. 21, \mathbb{N}° 2. C. 93–111. DOI: 10.1016/j.echo.2007.11.011.
 - 221. von Kanel, R. Effects of psychological stress and psychiatric disorders on

- blood coagulation and fibrinolysis: a biobehavioral pathway to coronary artery disease / R. von Kanel, P. J. Mills, C. Fainman, J. E. Dimsdale. Text: visual // Psychosomatic Medicine 2001. T. 63, № 4. C. 531–544. DOI: 10.1097/00006842-200107000-00003.
- 222. Vrijkotte, T. G. Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability / T. G. Vrijkotte, L. J. van Doornen, E. J. de Geus. Text: visual // Hypertension. 2000. T. 35, № 4. C. 880–886. DOI: 10.1161/01.HYP.35.4.880.
- 223. Wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore longitudinal study of aging / S. S. Najjar, A. Scuteri, V. Shetty [et al.]. Text: visual // Journal of the American College of Cardiology. 2008. T. 51. C. 1377–1383. DOI: 10.1016/j.jacc.2007.10.065.
- 224. World Health Organization (WHO). Hypertension Text: electronic. URL: https://www.who.int/news-room/fact-sheets/detail/hypertension
- 225. World Health Organization (WHO). Obesity and overweight Text: electronic. URL: https://www.who.int/news-room/fact-sheets/detail/tobacco
- 226. World Health Organization. Global status report on noncommunicable diseases. Text: electronic. URL: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
- 227. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. Text: electronic. URL: http://www.wma.net/en/30publications/10policies/b3/17c.pdf
- 228. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants / B. Zhou [et al.]. Text: visual // Lancet. 2017. T. 389. C. 37–55. DOI: 10.1016/S0140-6736(17)32467-8.
- 229. Zigmond, A. S. The Hospital Anxiety and Depression Scale / A. S. Zigmond, R. P. Snaith. Text: visual // Acta Psychiatrica Scandinavica—1983. T. 67. C. 361–370.